期刊文献+

介孔碳微球的氢醌改性及电容性能研究 被引量:4

Hydroquinone-modified Mesoporous Carbon Nanospheres with Excellent Capacitive Performance
下载PDF
导出
摘要 由于纯碳材料单一的双电层储能机理,其比电容较低,而赝电容材料可利用法拉第反应进行能量存储,可以获得较高的比电容。作者利用软模板法制备出具有三维有序结构的介孔碳微球,然后采用水热法制备氢醌改性的介孔碳微球。循环伏安和恒流充放电测试表明,氢醌改性使得介孔碳微球不仅具有双电层电容,而且具有赝电容。负载10wt%氢醌的介孔碳微球具有最大的比电容值,当电流密度为0.5 A/g时,其比电容值高达285 F/g;当电流密度增大到10 A/g时,其比电容值仍高达212 F/g,表现出优异的倍率特性。这主要归因于氢醌以π-π堆叠方式负载在碳质介孔表面,不仅提供了额外的赝电容,而且提高了碳材料在水系电解液中的倍率特性。 Pure carbon materials store energy mainly by the electric double-layer mechanism, resulting in their low specific capacitance. However, pseudocapacitive materials can store energy through faradaic reactions, leading to drastically improved specific capacitance. Herein, mesoporous carbon nanospheres with 3D ordered pore symmetry were synthesized by soft template method. Then, the hydroquinone (HQ) was used to modify mesoporous carbon nanospheres by hydrothermal method. As demonstrated by cyclic voltammetry and galvanostatic charge-discharge tests, HQ modified carbon nanospheres show both electric double layer capacitance and pseudocapacitance. Carbon nanospheres with 10wt% HQ loading possess the highest specific capacitance of 285 F/g at the current density of 0.5 A/g and 212 F/g at 10 A/g, exhibiting excellent rate performance. This should be ascribed to the HQ molecules adsorbed on carbonaceous mesopore surface by π-π interactions, which not only provide extra pseudocapacitance, but also improve the rate performance of carbons in aqueous electrolyte.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2018年第1期48-52,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(21476264) 泰山学者青年专家计划(tsqn20161017) 中央高校基础研究经费(15CX05029A)~~
关键词 介孔碳 氢醌 赝电容 超级电容器 mesoporous carbon bydroquinone pseudocapacitance supercapacitor
  • 相关文献

参考文献2

二级参考文献43

  • 1雷立旭,张卫锋,胡猛,Dermot O'Hare.层状复合金属氢氧化物:结构、性质及其应用[J].无机化学学报,2005,21(4):451-463. 被引量:37
  • 2YANG F, ZHAO M, SUN Q, et al. A novel hydrothermal synthesis and characterisation of porous Mn304 for supercapacitors with high rate capability. RSCAdv., 2015, 5(13): 9843-9847.
  • 3RAJ B G S, RAMPRASAD R N R, ASIRI A M, et al. Ultrasound assisted synthesis of Mn304 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochimica Acta, 2015, 156(1): 127-137.
  • 4SIMON P, GOGOTSI Y. Materials for electrochemical capacitors. Nat.Mater., 2008, 7(11): 845-854.
  • 5ZHAO X, S NCHEZ B M, DOBSON P J, et al. The role of nano- materials in redox-based supercapacitors for next generation en- ergy storage devices. Nanoscale, 2011, 3(3): 839-855.
  • 6EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326-1330,.
  • 7JING M, WANG J, HOU H, et al. Carbon quantum dot coated Mn304 with enhanced performances for lithium-ion batteries. J. Mater Chem. A, 2015, 3(32): 16824 16830.
  • 8XIAO Y, CAO Y, GONG Y, et al. Electrolyte and composition ef- fects on the performances of asymmetric supercapacitors constructed with Mn304 nanoparticles-graphene nanocomposites . Journal of Power Sources, 2014, 246(8): 926 933.
  • 9MEI J, ZHANG L. Novel MnOOH-graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors. Journal of Solid State Chemistry, 2015, 221: 178-183.
  • 10CAO Y, XIAO Y, GONG Y, et al. One-pot synthesis of MnOOH nanorods on graphenefor asymmetric supercapacitors. Electrochem. Acta, 2014, 127: 200-207.

共引文献10

同被引文献39

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部