期刊文献+

点几何纲要 被引量:14

Outlines for Point-Geometry
下载PDF
导出
摘要 提出一种更方便的几何代数系统,它兼有坐标方法、向量方法和质点几何方法三者的长处而避免其缺点. A more convenient geometric-algebraic system is proposed, which avoids the shortcomings of coordinate method, vector method, and particle geometry method.
作者 张景中
出处 《高等数学研究》 2018年第1期1-8,共8页 Studies in College Mathematics
关键词 坐标法 向量法 质点法 点几何 coordinate method, vector method, particle geometry, point geometry
  • 相关文献

参考文献1

二级参考文献30

  • 1Havel T. Geometric Algebra and Mbius Sphere Geometry as a Basis for Euclidean Invariant Theory[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 245~256.
  • 2Mourrain B, Stolfi. Computational Symbolic Geometry[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 107~140.
  • 3Hestenes D. The design of linear algebra and geometry[J]. Acta Applicandae Mathematicae, 1991, 23: 65~93.
  • 4Hestenes D. Invariant body kinematics II: Reaching and neurogeometry[J]. Neural Networks, 1994, 7(1): 79~88.
  • 5White N. A tutorial on Grassmann-Cayley Algebra[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 93~106.
  • 6Hestenes D. New Foundations for Classical Mechanics[M]. Dordrecht: Kluwer, 1987.
  • 7Li Hongbo. Clifford Algebras and Geometric Computation[M]. Chen F, Wang D eds., In: Geometric Computation, Singapore: World Scientific, 2004. 221~247.
  • 8Sturmfels B. Algorithms in Invariant Theory[M]. Wien: Springer, 1993.
  • 9Li Hongbo, Hestenes D, Rockwood A. Spherical Conformal Geometry with Geometric Algebra[M]. Sommer G ed., In: Geometric Computing with Clifford Algebras, Berlin Heidelberg: Springer, 2001. 61~76.
  • 10Li Hongbo, Hestenes D, Rockwood A. A Universal Model for Conformal Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces[M]. Sommer G ed., In: Geometric Computing with Clifford Algebras, Berlin Heidelberg: Springer, 2001. 77~104.

共引文献35

同被引文献37

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部