期刊文献+

基于季铵化壳聚糖-聚乙烯醇互穿网络型复合碱性聚电解质膜 被引量:3

Quaternized Chitosan-Polyvinyl Alcohol Based IPN Composite Alkaline Polymer Electrolyte Membranes
下载PDF
导出
摘要 通过对溶胶-凝胶法所制的纳米SiO_2进行季铵化改性得到季铵化SiO_2(QSiO_2),再将其与季铵化壳聚糖(QCS)和聚乙烯醇(PVA)的共混膜基体进行复合,经戊二醛交联制备了一系列不同QSiO_2添加量的互穿网络型QCS-PVA/QSiO_2复合碱性聚电解质膜。采用红外光谱、扫描电镜、热重分析、交流阻抗等考察了膜的结构、热稳定性和OH-离子电导率等。结果表明,无机粒子的加入使得复合膜的热稳定性提高,离子电导率呈现先上升后下降的趋势,在QSiO_2质量分数为5%时,其室温离子电导率达到最高0.0644 S/cm,是未添加QSiO_2的纯膜电导率(0.022 S/cm)近3倍,有望作为碱性聚电解质膜用于燃料电池中。 Quaternized SiO_2(QSiO_2) was firstly prepared by modification of nano-sized SiO_2 using silane coupling agent with quaternary ammonium groups.And then,a series of quaternized chitosan-poly(vinyl alcohol)/QSiO_2(QCSPVA/QSiO_2) interpenetrating polymer networks(IPN) composite membranes were fabricated by adding QSiO_2 into the QCS-PVA blend matrix and followed by glutaraldehyde crosslinking.The structure,thermal stability and ionic conductivity of the composite membranes were characterized by FT-IR,SEM,thermogravimetric analysis(TG) and electrochemical impedance spectroscopy(EIS).The results show that the thermal stability of the composite membranes is significantly improved.The ionic conductivity of QCS-PVA/QSiO_2 composite membranes exhibits a trend of rise first then fall.The QCS-PVA/QSiO_2 composite membranes with 5% QSiO_2 show the highest ionic conductivity as high as 0.0644 S/cm,which is about three times of the ionic conductivity of the pure QCS-PVA membrane(0.022 S/cm) at room temperature,indicating the potential application of these composite membranes in fuel cells.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2018年第1期137-142,共6页 Polymer Materials Science & Engineering
基金 湖北省自然科学基金面上项目(2016CFB369 2014CFB580)
关键词 季铵化壳聚糖 碱性聚电解质膜 聚乙烯醇 二氧化硅 离子电导率 quaternized chitosan alkaline polymer electrolyte poly (vinyl alcohol) silica ionic conductivity
  • 相关文献

参考文献2

二级参考文献16

  • 1Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications [Jl. Chem. Soc. Rev., 2013, 42 : 5768-5787.
  • 2Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems [ J ]. Energy Environ. Sci., 2014, 7: 3135-3191.
  • 3Pan J, Lu S F, Li Y, et al. High-performance alkaline polymer electrolyxe for fuel cell applicatioms [J ]. Adv. Funct. Mater., 2010, 20: 312-319.
  • 4Lin Y F, Yen C Y, Hung C H, et al. A novel comtx3site membranes based on sulfonated montmorillonite modified Nation (( R )) for DMFCs [J]. J. Power Sources, 2007, 168: 162-166.
  • 5Zhang G W, Zhou Z T. Organic/inorganic comlxsite membranes for application in DMFC [J]. J. Membr. Sci. , 2(X)5, 261 : 107-113.
  • 6Hasani-Sadrabadi M M, Dashtimoghadam E, Majedi F S, et al. Nation (R)/bio-functionalized montmorillonite nanohybrids as novel polyelectmle membranes for direct methanol fuel cells [ J ]. J. Power Sources, 2009, 190: 318-321.
  • 7Felice C, Ye S, Qu D Y. Nafion-montrnorillonite nanocomposite membrane for the effective reduetkm of fuel crossover [ J ]. Ind. Eng. Chem. Res., 2010, 49: 1514-1519.
  • 8Dogan H, lnan T Y, Koral M, et al. Organo-monmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications [J]. Appl. Clay S-,ci., 2011, 52: 285-294.
  • 9Harrimn W L, Hickner M A, Kim Y S, et al. Poly(arylene ether sulfone) COlyOl3mers and related systems from disulfonated nxmomer building blocks: sNthesis, choa-acterization, and performance-a topical review [J]. Fuel Cells, 2005, 5: 201-212.
  • 10方翔,沈培康.乙醇在钯电极上的电氧化机理[J].物理化学学报,2009,25(9):1933-1938. 被引量:13

共引文献9

同被引文献124

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部