期刊文献+

基于Landsat-8 OLI影像的植被信息提取方法研究 被引量:6

Study on Vegetation Information Extraction Method Based on Landsat-8 OLI Images
下载PDF
导出
摘要 植被是地理环境的重要组成部分,在城市生态环境系统中扮演着非常重要的角色。本文以池州市2014年OLI遥感影像为基础,结合30 m空间分辨率的DEM数据,在ENVI 5.1和ArcGIS 10.2软件的支撑下,对该区植被信息进行提取。通过对比原始波段组合、主成分分量组合和衍生波段组合的分类精度,确定植被信息提取的最佳波段组合,并对植被提取结果进行精度验证。结果表明:考虑NDVI、绿度指数和第一主成分的衍生波段组合植被提取精度最高,与该区已知的土地利用类型中的植被覆盖度进行比较,精度达到89.16%。这说明该波段组合方案对于Landsat-8影像提取植被信息效果较好,可以为其他地区植被信息的提取提供参考。 Vegetation is an important part of geographical environment,which plays a very significant role in the urban ecological environment system. This paper used OLI remote sensing images of Chizhou in 2014 as the foundation,combined with the DEM data of 30 m,under the support of ENVI5. 1 and ArcGIS10. 2 software,the vegetation information was extracted. By comparing the original band combination,the combination of principal component and the derivative band combination,this article determined the best band combination of vegetation information extraction,and verified the accuracy of vegetation extraction results. The results show that: derivative band combination which considering NDVI,green index and the first principal component has the highest interpretation precision,comparing with the vegetation coverage is known of land use types,the extraction accuracy was 89. 16%. Indicate that the band combination scheme for Landsat-8 images has the highest effective in extract vegetation information; it can provide reference of vegetation information extraction for other areas.
作者 赵冰雪 章勇
出处 《测绘与空间地理信息》 2018年第1期79-82,85,共5页 Geomatics & Spatial Information Technology
基金 池州学院教学研究基金项目(2015jyxm29) 池州学院研究中心基金项目(XKY201506)资助
关键词 OLI影像 植被提取 最佳波段组合 监督分类 OLI Images vegetation information extraction best band combination supervised classification
  • 相关文献

参考文献14

二级参考文献150

共引文献224

同被引文献64

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部