期刊文献+

基于高分值加权的改进阴影匹配定位算法研究 被引量:2

Improved Shadow Matching Positioning Algorithm Based on High Score Weighting
下载PDF
导出
摘要 针对传统阴影匹配(SM)信噪比阈值不能有效区分LOS/NLOS的情况,使卫星可见性观测不准导致较大的定位误差,本文在分析城市峡谷中接收机接收的信噪比特性基础上,提出了一种基于高分值加权的改进SM定位算法,并使用粒子滤波对动态场景下的改进SM定位结果进行滤波。实验结果表明,静态和动态场景下该算法的平均定位误差为2.45m和4.64m,相对于传统SM定位算法的3.96m和5.95m,分别降低了38.1%和21.9%. Traditional shadow matching signal-to-noise ratio (SNR) threshold cannot distinguish LOS/NLOS effectively, resulting in larger positioning error because of inaccurate visibility of the satellites. Based on the analysis of the SNR characteristics received by the receiver in the urban canyon, an improved shadow matching algorithm based on high score weighting is proposed, and the results of improved algorithm are filtered by particle filterin the dynamicscene. Experimental results show that the average positioning error of the algorithm is 2.45 m and 4.64 m in static and dynamic scene, which is reduced by 38.1% and 21.9% compared to 3.96 m and 5.95 m of traditional shadow matchingpositioning algorithm.
出处 《全球定位系统》 CSCD 2017年第6期1-8,共8页 Gnss World of China
基金 江西省自然科学基金(批准号:20142BAB207001) 江西省教育厅科学技术研究项目(编号:GJJ14369)
关键词 阴影匹配 粒子滤波 城市峡谷 Shadow matching particle filter urban canyons
  • 相关文献

参考文献2

二级参考文献22

  • 1BRUNATO M, BATTITI R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks:the International Journal of Computer and Telecommunications Networking, 2005, 47(6):825-845.
  • 2SCARLETT J. Enhancing the performance of pedometers using a single accelerometer[EB/OL].[2015-11-20].http://www.analog.com/media/en/technical-documentation/application-notes/47076299220991AN_900.pdf.
  • 3PARK S K, SUH Y S. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems[J]. Sensors, 2010, 10(10):9163-9178.
  • 4ALZANTOT M, YOUSSEF M. UPTIME:ubiquitous pedestrian tracking using mobile phones[C]//WCNC2012:IEEE Wireless Communications and Networking Conference. Piscataway, NJ:IEEE, 2012:3204-3209.
  • 5SUSI M, RENAUDIN V, LACHAPELLE G. Motion mode recognition and step detection algorithms for mobile phone users[J]. Sensors, 2013, 13(2):1539-1562.
  • 6NIU X, LI M, CUI X, et al. WTrack:HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensors[J]. Personal and Ubiquitous Computing, 2014, 18(8):1901-1915.
  • 7CHEN L H, WU E H K, JIN M H, et al. Intelligent fusion of WiFi and inertial sensor-based positioning systems for indoor pedestrian navigation[J]. IEEE Sensors Journal, 2014, 14(11):4034-4042.
  • 8CHEN Z, ZOU H, JIANG H, et al. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization[J]. Sensors, 2015, 15(1):715-732.
  • 9LI W W L, ILTIS R A, WIN M Z. A smartphone localization algorithm using RSSI and inertial sensor measurement fusion[C]//GLOBECOM2013:IEEE Global Communications Conference. Piscataway, NJ:IEEE, 2013:3335-3340.
  • 10WANG J, HU A, LIU C, et al. A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system[J]. Sensors, 2015, 15(4):7096-7124.

共引文献10

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部