期刊文献+

一种基于半监督学习的工控网络入侵检测方法 被引量:3

An intrusion detection method based on semi-supervised learning for industry control system network
下载PDF
导出
摘要 随着工控网络的发展以及工业和和信息化的深度融合,针对工业控制系统的攻击行为大幅度增长,对工控企业造成巨大的经济及财产损失。因此,提出一种基于半监督机器学习的入侵检测技术,该技术充分利用工控网络流量标记的特点,结合多种机器学习算法进行实现,并对算法的性能进行了优化。实验证明,该技术可以有效地检测出工控系统网络中的异常流量。 With the development of industry control system (ICS) network, especially the deep combination of industry and information tech- nology, attacks on ICS are greatly increased, which cause huge economic and property damage to ICS enterprises. In this paper, we design an intrusion detection method based on semi-supervised learning, which makes full use of the labelled feather of ICS network traffic, combines var- ied machine learning algorithms and improves the performance of the algorithms. Experimental results show that the method can effectively de- tect abnormal traffic of ICS network.
出处 《信息技术与网络安全》 2018年第1期44-47,共4页 Information Technology and Network Security
关键词 工业控制系统 入侵检测 半监督分类 机器学习 industry control system intrusion detection semi-supervised classification machine learning
  • 相关文献

参考文献6

二级参考文献110

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2李渭华,萧德云,方崇智.一种基于自适应滑动窗格形滤波算法的故障检测器[J].自动化学报,1996,22(2):251-253. 被引量:7
  • 3Day N E. Estimating the components of a mixture of normal distributions[J]. Biometrika, 1969, 56(3):463-474.
  • 4Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38.
  • 5Miller D J, Uyar H. A generalized Gaussian mixture classifier with learning based on both labelled and unlabelled data[C]//Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference. Cambridge, MA, USA: MIT Press, 1996: 783-787.
  • 6Nigam K, McCallum A, Thrun S, et al. Learning to classify text from labeled and unlabeled documents[C]// Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 1998: 792-799.
  • 7Baluja S. Probabilistic modeling for face orientation discrimination: learning from labeled and unlabeled examples[C]//Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference. Cambridge, MA, USA: MIT Press, 1998: 854-860.
  • 8Joachims T. Transductive inference for text classificationusing support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 1999: 200-209.
  • 9Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 2001: 19-26.
  • 10Szummer M, Jaakkola T. Partially labeled classification with Markov random walks[C]//Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference. Cambridge, MA, USA: MIT Press, 2001: 945-952.

共引文献224

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部