摘要
针对非差相位观测值中误差来源较多,对周跳探测不够敏感等问题,双差观测值可大幅削弱相关性较强的误差,较好地探测序列中小的周跳。该文以GPS双差观测序列为研究对象,运用卡尔曼滤波算法,建立双差观测序列周跳探测与修复模型。最后通过理论和实验分析,验证了模型的有效性和可靠性。
Aiming at the to the detection of cycle slip, errors, and better detect the problem that there are many errors in the phase observation, and insensitive the double difference observation can significantly weaken the relative strong small cycle-slips of the sequence. Taking the GPS double differential observa- tion series as the research object, this paper uses the Kalman filter algorithm to establish the cycle-slip tection and correction model of GPS double difference series. Finally, the validity and reliability of model are verified by theoretical and experimental analysis.
出处
《测绘科学》
CSCD
北大核心
2018年第1期1-5,19,共6页
Science of Surveying and Mapping
基金
中央高校基金项目(106112014CDJZR200018)
关键词
GPS
周跳探测
卡尔曼滤波
双差观测值
GPS
cycle-slip detection
Kalman filter
double difference observations de- the