期刊文献+

可用于血清游离铜快速检测的特异性识别元件

Specific Recognition Elements Available for Rapid Determination of Serum Free Copper
下载PDF
导出
摘要 铜离子广泛存在于环境和食品中,机体中游离铜离子含量增加可导致神经系统功能紊乱和肝、肾损害等。目前铜离子的检测方法主要有:原子吸收光谱法(AAS)、电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICPMS),这些方法虽然检测结果准确、灵敏度高,但仪器昂贵、样品处理复杂且不能区分铜离子的存在形态。因此,探索基于铜离子特异性识别元件构建的荧光或电化学检测方法在游离铜快速特异性响应中的应用受到了广泛青睐,其对应的铜离子特异性识别元件如有机小分子、纳米材料、生物分子等亦得到了不断地丰富和发展。有机小分子设计灵活,纳米材料响应灵敏,生物分子特异性强、生物相容性好,此三者作为特异性识别元件在血清游离铜的检测中具有广阔的应用前景。 Copper ions widely exist in the environment and food. However, the increasing level of free copper ions in living organism may lead to neurological disturbance, liver or kidney damage. At present, the detection methods of copper ions, such as AAS, ICP-AES, and ICP-MS, are accurate and sensitive, but these methods require expensive instrument, complicated sample pretreatment and can’t distinguish the forms of copper ions. Therefore, in order to overcome these limitations, exploring the application of fluorescence or electrochemical detection strategies based on the various copper ions specific identification elements in the rapid response of serum free copper has gained popularity. The corresponding copper ions specific recognition elements such as organic small molecules, nanomaterials and biomolecules have also been enriched and developed. Organic small molecules with flexible design properties, nanomaterials with high response sensitivity and biomolecules with strong specificity and good biocompatibility will have a broad application prospect in the detection of serum free copper.
出处 《生态毒理学报》 CAS CSCD 北大核心 2017年第5期55-63,共9页 Asian Journal of Ecotoxicology
基金 北京市教育委员会科技发展计划重点项目(KZ201510025027) 首都医科大学优秀学术带头人及团队交流培养项目
关键词 血清游离铜 快速检测 特异性识别元件 serum free copper rapid detection specific recognition elements
  • 相关文献

参考文献2

二级参考文献19

  • 1唐勇,王建华,向军俭,王宏,邓宁,杨红宇.镉离子单克隆抗体的鉴定及竞争ELISA的建立[J].免疫学杂志,2009,25(2):214-217. 被引量:17
  • 2谭树华,欧阳铭.铜对水生动物生理及毒性作用研究进展[J].江西农业学报,2010,22(11):139-142. 被引量:11
  • 3Georgopoulos P G , Roy A , Yonone-Lioy M .I , et al. J. Toxicol. Environ. Health, B2001, 4: 341-394.
  • 4Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linkedgoldnanoparticle assemblies[J]? J. Am. Chem. Soc., 2003, 125: 1643-1654.
  • 5Lee J S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg^2+) in Aqueous Media using DNA - Funetionalized Gold Nanoparticles[J]. Angew. Chem., hit. Ed., 2007, 46: 4093-4096.
  • 6Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine[J]. Angew. Chem., Int. Ed., 2010, 49: 3280.
  • 7ZhouY, Wang S, ZhangK, etal. Angew. Chem., Int. Ed., 2008, 47: 7454-7456.
  • 8Molleman E, Dreisinger D. The treatment of copper-gold ores by ammonium thiosulfateleaching[J]. Hydrometallurgy, 2002, 66~ 1-21.
  • 9Grosse A C, Dicinoski G W, Shaw M J, et aI. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)[J]. Hydrometallurgy, 2003, 69: 1-21.
  • 10TapanKS, Catherine J. Murphy. Langmuir, 2004, 20: 6414-6420.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部