摘要
利用权弱分担的定义以及唯一性理论方法讨论亚纯函数的k阶导数与差分或微分多项式的k阶导数分担值的问题.分析结果表明,当分担"(1,m)"且Θ(∞,f)介于一定范围的情况下,两个函数的k阶导数相等,其中对应不同的m值,n,m需满足不同的不等式.
We mainly use the definition of the weakly weighted sharing and the theory of uniqueness to discuss the problem that the k derivative of meromorphic function and the k derivative of the differential or differential polynomial share one value. The result is that k derivative of the two functions are equal when they share " ( 1, m) " and Θ(∞,f) is in a certain range, and different m value needs to satisfy different inequalities.
作者
林珊华
林伟川
LIN Shanhua;LIN Weichuan(School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China;School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, Fujian 350007, China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2018年第1期12-19,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省中青年教师教育科研基金资助项目(JA15394)
国家自然科学基金资助项目(11371225)
关键词
差分多项式
权弱分担
亚纯函数
唯一性
difference polynomials
weakly weighted sharing
meromorphic functions
uniqueness theorems