期刊文献+

大米淀粉硬碳负极材料的制备及其电化学性能研究 被引量:4

Preparation and electrochemical performance of rice starch hard carbon cathode material
下载PDF
导出
摘要 以大米淀粉为原料,氯化铵为脱水催化剂,经一步程序加热得到大米淀粉硬碳,并制得大米淀粉硬碳负极材料。实验结果表明,大米淀粉硬碳的可逆和不可逆比容量随碳化温度升高而降低,1050℃碳化的样品首次库伦效率最高达到75.5%,0.1C首次充电比容量和放电比容量分别为656mAh/g和495.6mAh/g;0.1C、1C循环充放电时,第50次循环的比容量分别是第1次放电比容量的91.96%和85.48%。大米淀粉硬碳负极材料成本低廉、制备过程环境友好,有望在锂离子电池领域得到应用。 With rice starch as the starting material and ammonium chloride as the dehydration catalyst,rice starch hard carbon(RSHC) was prepared by one-step programmed heating process.The micro-structure and morphology of prepared RSHC samples were characterized respectively.The electrochemical performance analysis Indicated that the reversible and irreversible specific capacities of prepared RSHCs decreased as carbonization temperatures increased.The carbonized material had the highest initial efficiency(75.5% )at 1050℃ (HC-1050).The initial charge/discharge capacities of HC-1050 were 656 mAh/g and 495.6 mAh/g at 0.1 C.After 50 charge-discharge cycles at the rate of 0.1 Cand 1 C,91.96% and 85.48% of initial discharge capacity can be still reached,respectively.Rice starch hard carbon cathode material may be applied to the lithium-ion battery field due to the environmental friendliness of preparation process and the low cost of raw materials.
出处 《化工新型材料》 CAS CSCD 北大核心 2018年第1期229-232,236,共5页 New Chemical Materials
基金 国家自然科学基金(61504168) 中国博士后科学基金第56批面上项目(2014M561754) 乌鲁木齐市科技计划项目(P151010005)
关键词 锂离子电池 淀粉 硬碳 电化学性能 Li-ionic battery,starch,hard carbon,electrochemical property
  • 相关文献

参考文献2

二级参考文献19

  • 1[1]贺福,王茂章.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.
  • 2[4]KAZUCHCHINCHINO MIYAMICHI,KENKI KAGENO,RYUTOKU YOSOMIYA.Effect of inorganic compounds on yield and tensile strength of pyrolysed rayon fibers[J].SEN-I GAKKAISHI,1986,42(8):52-62.
  • 3[5]KAZUO MIYAMICHI,KENJI KAGENO,RYUTOKU YOSOMIYA.Change in the physical properties with heat treatment of a rayon fabric treated with ammonium sulfate-preparation of a flame-proof fabric[J].SEN-I GAKKAISHI,1986,42(10):72-79.
  • 4[6]TANG M M,BACON R.Carbonization of Cellulose Fibers-I(Low Temperature Pyrolysis)[J].Carbon,1964,2:211-220.
  • 5N. Du, H. Zhang, B. D. Chen, J. B. Wu, et al. Porous Co3O4 nanotubes derived from Co4 (CO)12 clusters on carbon nanotube template: a highly efficient material for Li battery applications[J]. Advanced Materials, 2007, 19: 4505-4509.
  • 6P. J. Zuo, G. P. Yin, Z. L. Yang, etal. Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries [J]. Materials Chemistry and Physics, 2009, 115(2-3): 757-760.
  • 7C. K. Chan, R. Ruffo, S. S. Hong, et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J]. Journal of Power Sources, 2009, 189(2): 1132-1140.
  • 8A. Concheso, R. Santamaria, R. Menendez. Iron-carbon composites as electrode materials in lithium batteries [J ]. Carbon, 2006, 44(9): 1762-1772.
  • 9S. Lee, S. Yoon, C. M. Park, et al. Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries[J]. Electrochimica Acta, 2008, 54(1): 364 -369.
  • 10S. S. Zhang, K. Xu, T. R. Jow. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(11): 1636-1640.

共引文献10

同被引文献15

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部