期刊文献+

极地船波纹换热管冲蚀磨损研究与防护

Research and Protection of Erosion of Corrugated Heat Transfer Tubes on Polar Ships
下载PDF
导出
摘要 针对极地船波纹管换热器中进入冰晶颗粒对管路产生严重腐蚀磨损问题,采用CFD中欧拉-拉格朗日离散框架的DPM模型及腐蚀磨损模型研究流速、冰晶颗粒直径和含冰率条件变化对水平直波纹管磨损特性的影响。结果表明:波纹管磨损严重位置发生在波纹与直管衔接处、波谷处以及与流速相对的波峰面,且出口直管段磨损最为严重,而水平光滑圆管顶部位置磨损比较严重,但波纹管的磨损率均大于相同条件下光滑直管的磨损率;流速对磨损率影响最大,可使波纹管使用寿命减少10倍以上;冰晶颗粒直径对波纹管磨损影响较小;含冰率对管壁磨损也有很大影响,含冰率为10%时波纹管使用寿命比含冰率为2%时的减少4.2倍。根据以上研究结果提出了相应的防护措施。 In order to solve the problem of severe erosion of the corrugated heat exchanger on the polar ship, using the DPM model of Euler-Lagrangian discrete frame in CFD and the erosion wear model to ana- lyze the effects of different inlet velocities, ice particle diameters and ice contents on the wear characteris- tics of horizontal straight corrugated tubes. The numerical results show that: the location of severe wear occurs at the interface between the corrugated and the straight tube section, the trough, and the crest sur- face against the flow, and the export section of the straight tube wore down the most severely, and the top of horizontal somooth circular tube is relatively serious; the erosion rate of corrugated tube is larger than the erosion rate of smooth straight tube under the same condition; the flow velocity has largest impact on erosion rate and can reduce the service life of corrugated tube by more than 10 times; the effect of ice crystal diameter on the wear of corrugated tube is small, the ice content also has a great influence on wall erosion, when ice content is 10% , service life of corrugated tube decreases by 4.2 times than ice con- tent of 2%. The protective measures are given according to the research.
出处 《柴油机》 2018年第1期27-31,共5页 Diesel Engine
基金 国家自然科学基金项目(51479152)
关键词 极地船 波纹管换热器 腐蚀 磨损率 polar ship corrugated heat transfer tube: erosion: wear rate
  • 相关文献

参考文献3

二级参考文献30

  • 1黄勇,蒋晓东,施哲雄.弯头的冲蚀问题及其预测和预防[J].炼油技术与工程,2005,35(2):33-36. 被引量:35
  • 2马颖,任峻,李元东,陈体军,李炳.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25. 被引量:126
  • 3赵懿珺,贺益英.直角Z形组合双弯管流动特性的研究[J].水利学报,2006,37(7):778-783. 被引量:20
  • 4Suzuki M, Inaba K, Yamamoto M. Numerical simulation of sand erosion in a square-section 90-degree bend[J]. Journal of Fluids Science and Technology, 2008, 3 ( 7 ): 868-880.
  • 5Badr H M, Habib M A, Ben-Mansour R, et al. NumericM investigation of erosion threshold velocity in a pipe with suddencontraction[J]. Computers& Fluids, 2005,34 (6): 721-742.
  • 6Meng H C, Ludema K C. Wear models and prediction equations: their form and content[J]. Wear, 1995,181-183: 443-457.
  • 7Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 1975,12 ( 5 ): 471-478.
  • 8Head W J, Harr D H. The development of a model to predict the erosion of materials by natural contaminants[J]. Wear, 1970, 15(1):1-46.
  • 9Wallace M S, Dempster W M, Scanlon T, et al. Prediction of impact erosion in valve geometries[J]. Wear, 2004, 256 (9-10): 927-936.
  • 10Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3(2):87-103.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部