期刊文献+

一种高效的改进频繁项集挖掘算法 被引量:5

An Efficient and Improved Algorithm for Mining Frequent Itemsets
下载PDF
导出
摘要 提出一种结合投影与排序频繁项集位置索引表的挖掘频繁项集改进算法,通过单趟扫描数据库,建立存储项集关系的"投影"数据结构,直接找到频繁1-项集及通过内积运算获得频繁2-项集.然后建立高阶项集的位置索引表,通过跨越式搜索和连接,依次找出后续频繁项集.通过实验分析,大大提高了寻找频繁项集的效率. This paper proposes an improved algorithm for mining frequent itemsets based on the projection andsorting location index table of frequent itemsets. The data structure of "projection" is set up by scan database once,and find the frequent 1- itemsets directly and obtain frequent 2- itemsets by inner product operation. Then, thelocation index table of the higher order itemsets is established, find the frequent itemsets by leaping searching andlinking. Through the experimental analysis, the efficiency of finding frequent itemsets is greatly improved.
作者 王杰 乐红兵
出处 《微电子学与计算机》 CSCD 北大核心 2018年第2期49-51,共3页 Microelectronics & Computer
关键词 关联规则 频繁项集 位置索引表 跨越搜索 association rule frequent itemsets location index table leaping search
  • 相关文献

参考文献4

二级参考文献17

  • 1杜跃,王治和,景永霞.基于数组的关联规则挖掘算法[J].甘肃联合大学学报(自然科学版),2007,21(3):56-57. 被引量:1
  • 2陈刚,李秀,刘文煌.基于“新颖度”的关联挖掘算法[J].微计算机信息,2006,22(08X):1-3. 被引量:4
  • 3王柏盛,刘寒冰,靳书和,马丽艳.基于矩阵的关联规则挖掘算法[J].微计算机信息,2007,23(05X):144-145. 被引量:18
  • 4AGRAWAL R, IMIELINSKE T, SWAMI A. Mining as- sociation rules between sets of items in large databases [ C ]// Proceeding of the ACM SICMOD Conference on Management of Data. New York: ACM Press, 1993: 207-216.
  • 5Han J,Kambr M. Data Mining:Concepts and Techniques[M]. Beijing: Higher Education Press,2001.
  • 6Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules Santiago, Chile: Proc. of the 20th Int'l Conference on Very Large Databases, 1994 : 487-499.
  • 7Park J S, Chen Mingsyan, Yu P S. An Effective Hash-based Algorithm for Mining Association Rules. San Jose, CA:Proc. of the ACM SIGMOD Intl Conf. on Management of Data, 1995:175-186.
  • 8Chen M S, Han J, Yu P S. Data Mining: An Overview from Database Perspective[J]. IEEE Transactions on Knowledge and Data Engineering,1996,8(6) : 866-883.
  • 9R Agrawal, T Srikant. Fast Algorithms for Mining Association Rules in Large Database [ C ]. Santiago : Proceedings of the 20th VLDB Conference, 1994. 487-499.
  • 10J Han, J Pei, Y Yin. Mining Frequent Patterns without Candiate Generation [ C ]. Dallas : SIGMOD, 2000.1-12.

共引文献49

同被引文献32

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部