摘要
在传统的基于最小安全距离的车辆跟驰模型基础上,把灰色模型与神经网络模型结合起来,利用采集的车辆速度信息预测前车未来车速,提前预知前车制动迹象,使自车能在前车制动前减速,有效减少了制动距离对自车司机反应时间的依赖.最后通过MATLAB/Simulink以及Carsim软件进行联合仿真,验证了本文所述模型的有效性.
In this paper, the grey model and neural network model are combined on the basis of the traditional car-following model based on the minimum safe distance, the local vehicle using the collected vehicle speed informationto predict the front vehicle speed and perceived front car will brake earlier, so, the local car can slow down before thefront car, so driver reaction time has little effect on braking distance. MATLAB/Simulink and Carsim will be usedto build model to verify the effectiveness of the model in this paper.
出处
《微电子学与计算机》
CSCD
北大核心
2018年第2期122-127,132,共7页
Microelectronics & Computer
基金
中国科学院战略性先导专项(XDA06040300)