摘要
在装备质量状态评估中,为了缩短面向战备任务的状态评估时间,提高质量管理和战备工作效率及战备完好性水平,提出了指标体系生成的菱形框架模型,进而对各类指标收敛方法的特征进行了分析;之后基于主成分分析法(PCA)构建了指标优化模型,并进行质量状态的初步评估;最后通过算例对方法的适用性进行了验证分析。通过分析证明,PCA在原始指标的特征变换及增量指标的处理方面具有较强的优越性,提高了评估效率,可以很好地实现状态评估指标在常规状态和战备状态的优化区分。
In the quality condition assessment of equipment, a diamond frame model of the index system is put forward in order to shorten the time for the condition assessment aiming at missions while improving the quality management efficiency, combat preparation efficiency, and the level of combat readiness. Then, the characteristics of index convergence methods are analyzed. After that, the index optimization model is built and the quality condition is preliminarily assessed based on Principal Component Analysis (PCA). Finally, a numerical example is given to verify the feasibility of the method. The analysis shows that:PCA has strong superiority in original index feature transformation and incremental index processing, which can improve the evaluation efficiency, and achieve optimized distinguishing of the state assessment indexes between normal state and state of combat preparation.
出处
《电光与控制》
北大核心
2018年第2期79-82,87,共5页
Electronics Optics & Control
基金
国家自然科学基金(51605487)
国防预研基金(401080102)
关键词
质量状态评估
菱形框架
主成分分析
降维
quality condition assessment
diamond formation
Principal Component Analysis ( PCA )
dimension reduction