期刊文献+

基于改进DDE算法的协同干扰资源分配 被引量:3

Cooperative Jamming Resource Allocation Based on the Improved DDE Algorithm
下载PDF
导出
摘要 针对DDE-MRR算法存在的过早成熟和收敛过慢等缺陷,提出了一种新的DDE算法,用于电子对抗中协同干扰资源分配问题的求解。该算法首先依据协同干扰资源分配问题中存在的D/N不对等现象,重构了种群样本,然后基于DE/best/1策略对种群样本进行变异操作,最后通过贪婪机制实现样本更新。设计了3组仿真实验,对改进算法的收敛性和数值结果进行了验证分析,结果表明:改进算法收敛速度更快、计算结果更优,能够较好地解决电子对抗中的协同干扰资源分配问题,具备一定的实用价值。 To overcome the defects of the slow convergence speed and precocity of Discrete Differential Evolution (DDE)-MRR algorithm, a new DDE algorithm is proposed to solve the Cooperative Jamming Resource Allocation (CJRA) problem in electronic countermeasures. Firstly, the samples of the species group are reconstructed based on the inequality of D/N in CJRA problem. Secondly, the DE/best/1 strategy is used for mutation operation. Finally, the sample refreshment is implemented by greedy strategy. Three experiments are designed to analyze the convergence and numerical performance, and the results show that the proposed algorithm is more efficient and has practical value for solving the CJRA problem.
作者 吴娜 车蕾
出处 《电光与控制》 北大核心 2018年第2期107-110,共4页 Electronics Optics & Control
基金 北京高等学校青年英才计划项目(YETP1503) 北京市教育委员会科技计划面上项目(KM201511232016)
关键词 电子对抗 差分进化算法 变异策略 资源分配 electronic countermeasures differential evolution algorithm mutation strategy resource allocation
  • 相关文献

参考文献2

二级参考文献26

  • 1史和生,李丹,赵宗贵,毛少杰,史长根.电子干扰对低可观测飞行器飞行路径规划的影响[J].南京航空航天大学学报,2007,39(2):154-158. 被引量:8
  • 2Storn R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341 -359.
  • 3Xin B, Chen J, Zhang J, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy[J]. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2012,42(5) :744 - 767.
  • 4Zhang C M, Chen J, Xin B. Distributed memetie differential evolution with the synergy of Lamarckian and Baldwinian learning[J]. Applied Soft Computing, 2013,13(5) :2947 - 2959.
  • 5Onwubolu G C. Scheduling flow shops using differential evolution algorithm [ J ]. European Journal of Operational Research, 2006,171(2) :674 - 692.
  • 6Onwubolu G C. Design of hybrid differential evolution and group method of data handling networks for modeling and prediction [ J ]. Information Sciences, 2008,178(18) :3616 - 3634.
  • 7Qian B, Wang L, Hu R, et al. A hybrid differential evolution method for permutation flow-shop scheduling [J]. The International Journal of Advanced Manufacturing Technology, 2008,38(7 - 8): 757 - 777.
  • 8Onwubolu G C, Davendra D. Differential evolution: a handbook for global permutation-based combinatorial optimization[M]. Poland: Springer, 2009.
  • 9Manne A S. A target-assignment problem [ J ]. Operations Research, 1958,6(1) :346 - 351.
  • 10Braford J C. Determination of optimal assignment of a weapon system to several targets[R]. Dallas, Texas: Vought Aeronautics, 1961.

共引文献21

同被引文献44

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部