期刊文献+

基于DeepMask和RJMCMC的遗留箱体检测

Abundant Box Detection Based on Deep Mask and RJMCMC
下载PDF
导出
摘要 论文针对视频监控中的遗留箱体检测进行了研究,提出了基于深度神经网络特征提取及分割和贝叶斯网络建模相结合的检测方案。深度神经网络用于特征提取及个体分割以获取当前帧的似然概率及箱体检测,并使用贝叶斯建模方法将跟踪问题转化为状态的最大后验估计,在求解过程中采用RJMCMC的迭代采样法,以实现对可变多目标的跟踪。进而借助于RJMCMC过程的三种行为方式中的"新生"及跟踪状态,来判别箱体是否为遗留,从而实现对视频中遗留箱体检测。实验结果集定量分析评估表明了该算法的有效性。 In this paper,the detection of legacy box in video surveillance is studied,and a detection scheme based on depth neural network feature extraction and segmentation and Bayesian network modeling is proposed. The depth neural network is used for feature extraction and individual segmentation to obtain the likelihood and box detection of the current frame,and the Bayesianmodeling method is used to transform the tracking problem into the maximum posteriori estimation of the state,in the process of solv-ing the use of RJMCMC iterative sampling side,in order to achieve a variable multi-target tracking. And then by means of the RJM-CMC process of the three kinds of behavior in the"new"and tracking status,to determine whether the box is left,so as to achieve the video in the box detection. The quantitative analysis of the experimental results shows that the algorithm is effective.
出处 《计算机与数字工程》 2018年第1期16-20,共5页 Computer & Digital Engineering
基金 陕西省教育厅专项科研计划项目(编号:16JK2140) 国家自然科学基金项目(编号:61701215) 江西省重点实验室开发基金项目(编号:2016WICSIP027)资助
关键词 样本分割 可逆跳转马尔科夫链蒙特卡洛 贝叶斯推理 后验概率 多目标跟踪 sample segmentation reversible jumping Markov chain Monte Carlo Bayesian reasoning posterior probability multi-target tracking
  • 相关文献

参考文献2

二级参考文献8

  • 1潘石柱,殳伟群,王星.基于自适应背景的实时运动物体检测[J].计算机应用,2004,24(10):94-96. 被引量:13
  • 2万琴,王耀南.基于卡尔曼滤波器的运动目标检测与跟踪[J].湖南大学学报(自然科学版),2007,34(3):36-40. 被引量:24
  • 3贾君君,李晋惠.一种目标自动识别与跟踪算法研究[J].国外电子测量技术,2007,26(3):25-27. 被引量:3
  • 4Claudio S, Regazzoni C S. A distributed surveillance system for detection of abandoned objects in unmanned railway environments[ J ]. IEEE Transactions on Vehicular Technology,2000, 49:1 - 13.
  • 5Beynon M, Hook D, Seibert M, et al. Detecting abandonded packages in a Multi - camera video surveillance system[ C]// Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance. New York: IEEE,2003:221 - 228.
  • 6Marcenaro L,Ferrari M,Marchesotti L. Multiple object tracking under heavy occlusion by using Kalman filters based on shape matching[ C]//Procecdings of International Conference on Image Processing. New York: IEEE,2002:341 - 344.
  • 7Rabiner L R,Juang B H. An introduction to hidden Markov models[J]. IEEE ASSP Mag, 1986,3(1):4-16.
  • 8Yamato J,Ohya J,Ishii K. Recognizing human action in time -sequential images using hidden Markov modal[ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 1992: 379 - 385.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部