摘要
基于符号计算软件Maple,利用楼直接方法研究了一个(2+1)-维Toda-like晶格方程的对称变换。基于求得的对称变换,得到了这个微分差分方程一个新的类孤子解。该方法对于求解微分差分方程十分有效,并可以获得丰富的精确解。
With the aid of Maple,we obtain the symmetry transformation of a( 2 + 1)-dimensional Toda-like lattice based on the Lou's direct method. Moreover,a new soliton-like solution of the differential-difference equation is presented based on the symmetry transformation we got. The method is quite effective to differential-difference equations,and can get more explicit solutions.
出处
《大连民族大学学报》
2018年第1期48-51,共4页
Journal of Dalian Minzu University
基金
辽宁省科技厅自然科学基金指导计划(20170540199)
中央高校基本科研业务费专项资金资助项目(DC201502050403)