2Holt D E, Bajoria R. The role of nitro-reduction and nitric oxide in the toxicity of chloramphenicol. Hum Exp Toxicol, 1999, 18:111-118.
3Wareham D W, Wilson P. Chloramphenicol in the 21st Century. Hosp Med, 2002, 63:157-161.
4Posyniak A, Zmudzki J, Niedzielska J. Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography. Anal Chim Acta, 2003, 483:307-311.
5Masahiko T, Shigeki D, Taketoshi N. Determination of chloramphenicol residues in fish meats by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J Chromatogr A, 2003, 1011:67-75.
6Forti A F, Campana G, Simonella A, et al. Determination of chloramphenico! in honey by liquid chromatography-tandem mass spec- trometry. Anal Chim Acta, 2005, 529:257-263.
7Mottier P, Parisod V, Gremaud E, et al. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A, 2003, 994:75-84.
8Raz S R, Bremer M G E G, Haasnoot W, et al. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Anal Chem, 2009, 81:7743-7749.
9Yuan J, Oliver R, Aguilar M I, et al. Surface plasmon resonance assay for chloramphenicol. Anal Chem, 2008, 80:8329-8333.
10Mohamed R, Richoz-Payot J, Gremaud E, et al. Advantages of molecularly imprinted polymers LC-ESI-MS/MS for the selective extraction and quantification of chloramphenicol in milk-based matrixes. Comparison with a classical sample preparation. Anal Chem, 2007, 79: 9557-9565.