期刊文献+

RDP与葫芦脲协同阻燃聚碳酸酯的研究 被引量:6

Study on Flame-retardant Synergy of Polycarbonate with RDP and Cucurbituril
下载PDF
导出
摘要 采用间苯二酚二苯基磷酸酯(RDP)复配大环分子葫芦[6]脲(CB[6])对聚碳酸酯(PC)进行无卤阻燃改性。通过极限氧指数仪、锥形量热仪、热失重分析仪及扫描电子显微镜测试分析了阻燃体系的阻燃性能、热性能及燃烧炭层的微观形貌。结果表明,RDP与CB[6]复配质量比为6∶2时阻燃效果最好,材料的极限氧指数达到32.5%,通过UL94 V-0级,热释放速率峰值(PHRR)降低至266 k W/m2;复配阻燃体系的加入改善了PC热稳定性,提高了阻燃复合材料的残炭率;复配阻燃体系能促进形成连续致密的膨胀炭层。 Flame-retardant polycarbonate( PC) compounds were prepared by combination of resiorcinol bis( diphenyl phosphate)( RDP) and cucurbituril( CB),and their flame-retardant performance was evaluated by limiting oxygen index,UL 94 vertical burning experiment and cone calorimetry. Moreover,their thermal behaviors were investigated by thermogravimetric analysis,and the morphology of their residual char was determined by SEM. The results indicated that the compounds obtained an optimum flame-retardant effect at the RDP/CB mass ratio of 6/2 and achieved an limited oxygen index of 32. 5 vol%,a UL 94 V-0 classification and a heat release rate of 266 k W/m^2. The combination of RDP and CB improved the thermal stability of PC and enhance its char formation effectively. The morphological observation confirmed that a dense and compact intumescent char layer was formed due to a synergy between RDP and CB,consequently enhancing the flame retardancy upon PC.
出处 《中国塑料》 CAS CSCD 北大核心 2018年第1期44-50,共7页 China Plastics
基金 国家自然科学基金资助项目(51103002) 北京工商大学大学生科学研究与创业行动计划(201710011180) 北京工商大学两科基金培育项目(LKJJ2017-17)
关键词 聚碳酸酯 芳基磷酸酯 葫芦脲 无卤阻燃 协同效应 polycarbonate aryl phosphate cucurbituril halogen-free flame retardant synergistic effect
  • 相关文献

参考文献6

二级参考文献91

  • 1吕军,黄锐.双酚A型聚碳酸酯结晶行为研究进展[J].华东理工大学学报(自然科学版),2006,32(2):225-234. 被引量:7
  • 2欧育湘,郑德,陈宇,韩廷解.阻燃领域中一些重要的理论研究课题及其进展[J].塑料,2006,35(1):1-4. 被引量:8
  • 3黄政道,张有勇,刘佑习.酯交换反应对PBT/PC共混体系相容性及热行为的影响[J].功能高分子学报,1996,9(4):489-494. 被引量:6
  • 4LEVCHIK S V, WEIL E D. Overview of recent development in the flame retardancy of polycarbonates[J]. Polymer International, 2005, 54(7): 981-998.
  • 5TAGAYA H, KATOH K, KADOKAWA J, et al. Decomposition of polycarbonate in subcritical and supercritical water[J]. Polymer Degradation and Stability, 1999, 64(2): 289-292.
  • 6ABBAS K B. Thermal degradation of bisphenol A polycarbonate[J]. Polymer, 1980, 21(8): 936-940.
  • 7PUGLISI C, STURIALE L, MONTAUDO G. Thermal decomposition processes in aromatic polycarbonates investigated by mass spectrrometry[J]. Macromolecules, 1999, 32(7): 2194- 2203.
  • 8OBA K, ISHIDA Y, ITO Y. et al. Characterization of branching and/or cross-linking structures in polycarbonate by reactive pyrolysis-gas chromatography in the presence of organic alkali [J]. Macromolecules, 2000, 33(22): 8173-8183.
  • 9KURODA S I, TERAUCHI K, NOGAMI K, et al. Degradation of aromatic polymers:Ⅰ. Rates of crosslinking and chain scission during thermal degradation of several soluble aromatic polymers [J]. European Polymer Journal, 1989, 25(1): 1-7.
  • 10CARROCCIO S, PUGLISI C, MONTAUDO G. Mechanisms of thermal oxidation of poly(bisphenol A carbonate)[J]. Macromolecules, 2002, 35(11): 4297-4305.

共引文献34

同被引文献70

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部