期刊文献+

基于改进尺度不变特征变换的手术室多视点图像拼接算法 被引量:2

Multi-view image mosaic algorithm based on improved scale invariant feature transform in operation room application
下载PDF
导出
摘要 目的为了提高手术室环境下拼接后全景图像的主观质量,本文提出一种基于改进尺度不变特征变换(scale invariant feature transform,SIFT)的手术室多视点图像拼接算法。方法基于SIFT特征点匹配算法,依据手术室采集设备为平行摄像机且获取的两视点高关注区域重叠较宽泛的特点,提出采用局部加权融合的拼接算法消除拼接重影,并在局部加权融合算法下,对参与图像空间变换的特征点在垂直方向增加约束,筛选出正确匹配特征点对以消除拼接折痕。结果此算法解决了手术室拼接图像中手术衣的袖子、手术剪和手套的重影及治疗巾位置拼缝不对齐的问题,即消除了术野高关注度下的拼接重影及误匹配带来的拼接折痕,保证了两幅图像拼缝后的平滑过渡。结论基于改进SIFT特征点匹配的算法获得了较好的主观手术画面的拼接质量。 Objective In order to improve the subjective quality of the stitched panoramic image taken in the operation room,a multi-view image mosaic algorithm based on improved scale invariant feature transform( SIFT) is proposed. Methods An algorithm with local weighted fusion was proposed to eliminate splicing ghosting phenomenon. Moreover,to eliminate stitching crease phenomenon in stitched images,new constraints were proposed and applied in vertical image space transformation to select the accurate matching feature points.Results The proposed algorithm solved the problem of mosaic in the stitched images,for example,the quilting appeared at the sleeve of the surgical gown,the operation shears,the gloves and uneven treatment towel position. Conclusions Better subjective quality of the stitched panoramic operation images is achieved by using the improved algorithm.
出处 《北京生物医学工程》 2018年第1期9-14,39,共7页 Beijing Biomedical Engineering
基金 国家自然科学基金(61672362 61272255) 北京市自然科学基金(4172012) 北京市教育委员会科技发展计划一般项目(KM201710025011) 北京市优秀人才培养资助青年骨干个人项目(2016000020124G103)资助
关键词 图像拼接 多视点手术图像 尺度不变特征变换 图像配准 加权融合算法 image st itching multi-view surgery images scale invariant feature transform imageregistration weighted fusion algorithm
  • 相关文献

参考文献6

二级参考文献85

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 3郭磊,李克强,马莹,王建强,连小珉.基于定向二维插值的逆投影变换方法[J].清华大学学报(自然科学版),2006,46(5):712-715. 被引量:7
  • 4Lowe D G. Distinctive image features from Scale--Invariant key- points [J]. The International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 5Ke Y, Sukthankar R. PCA--SIFT: A more distinctive representa- tion for local image descriptors [A]. Proceedings of IEEE Interna- tional Conference on Computer Vision and Pattern Recognition, Washington [C] .DC, USA, 2004, 2: 511-517.
  • 6Bert P J, Adelson E H. A multiresolution spline with application to image mosaics [J]. ACM Transactions on Graphics, 1983, 2 (4) : 217 - 236.
  • 7Lowe D G. Object recognition from local scale invariant features[C]. Proceedings of the Seventh International Conference on Computer Vision (ICCV9), Amsterdam: Corfu 1999: 1150-1157.
  • 8Lowe D G. Distinctive image features from scale-invariantkey-points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9张朝伟,周焰,吴思励,林洪涛.基于SIFT特征匹配的监控图像自动拼接[J].计算机应用,2008,28(1):191-194. 被引量:39
  • 10Heinze N, Esswein M, Kriiger W, et al. Automatic image exploitation system for small UAVs [ C ]. Proceedings of SPIE Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications, 2008.

共引文献147

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部