期刊文献+

机载激光雷达波形数据横向高斯分解方法 被引量:5

A Lateral Gaussian Decomposition Method for LiDAR Waveform Data
原文传递
导出
摘要 针对机载激光雷达波形数据分解易受噪声影响,高斯组分个数及叠加波初始参数估计不精确等问题,提出了一种横向高斯波形分解方法。该方法首先对波形进行滤波平滑处理,剔除背景噪声后,将检测到的波峰划分为不同的类型,分别估计其初始参数;然后横向逐步迭代分解估计初始高斯分量,在去除无效的初始高斯分量后,利用列文伯格-马夸尔特(Levenberg-Marquardt)算法进一步优化参数;最后解算得到分解点云。实验结果表明,该方法能有效地检测各种类型的回波信号,对叠加波形具有良好的适应性,并能在一定程度上保护弱波。相比系统点云,本文方法解算的点云在数量和细节上更具有优势,反映了更加丰富的地物垂直结构信息以及在森林参数获取方面的应用潜力。 The decomposition of waveform data is a key step in waveform analysis.Traditional waveform decomposition methods cannot detect overlapped sub-waveforms and weak sub-waveforms,and cannot appropriately estimate the number of Gaussian components.In this article,we propose a lateral Gaussian decomposition method.A waveform is smoothed after removing the background noise.We divide the detected waves into different types of waveforms,and estimate their initial parameters with different methods,then progressively laterally decompose waveform until all the Gaussian components are decided.After removing invalid components,we usethe Levenberg-Marquardt method to further optimize the parameters.Experiments show that this new method can effectively detect different kinds of complicated waveforms;demonstrating both robustness and efficiency.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第1期81-86,100,共7页 Geomatics and Information Science of Wuhan University
关键词 全波形数据 高斯分解 列文伯格-马夸尔特算法 分解点云 full-waveform Gaussian decomposition LM method generate point cloud
  • 相关文献

参考文献4

二级参考文献36

  • 1庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158. 被引量:105
  • 2庞勇,李增元,陈尔学,孙国清.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136. 被引量:159
  • 3Ackmann , F. 1999. Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry &Remote Sensing, 54:64--67
  • 4Baltsavias E P. 1999. A comparison between photogrammetry and laser scanning. 1SPRS Journal of Photogrammetry & Remote Sensing, 54 : 83 --94
  • 5Bilmes J A. 1998. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Department of Electrical Engineering and Computer Science. U. C. Berkeley TR-97-021
  • 6Dempster A P, Laird N M, Rubin DB, 1977. Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B ,39 ( 1 ), 1--38
  • 7Gamba P, Houshmand B. 2000. Digital surface models and building extraction : a comparison of IFSAR and LIDAR data. IEEE Transaction on Geoscience and Remote Sensing, 38 : (4) : 1959--1968
  • 8Hofton M A, Blair J B, Minster J. 2000. Decomposition of laser altimeter Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 38 : ( 4 ) 1989--1996
  • 9Oliver J J, Baxter R A, Wallace C S. 1996. Unsupervised learning using MML. Machine Learning. Proceedings of the Thirteenth International Conference ( ICML 96 ). Morgan Kaufmann Publishers, San Francisco CA USA
  • 10Optech: ALTM Waveform Digitizer Operation and Processing Manual ALTM 3100. 2006

共引文献54

同被引文献54

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部