摘要
针对防空作战中目标分配的实时性、动态性、高效性以及作战决策的稳定性需求,基于种群协同进化思想提出一种免疫-布谷鸟算法。通过建立种群协同进化机制,利用两个种群进行不同方向的搜索并实时进行信息交互,加快算法收敛速度;利用布谷鸟算法参数少、易实现及较好的全局搜索能力,以及基于免疫机制的高斯变异算子较强的局部搜索能力,实现了求解速度和解的精度的平衡问题,提高算法的进化活力和求解效率。仿真实验表明,改进的布谷鸟算法与传统的目标分配算法相比,求解效率和性能上有明显提高,新算法求解目标分配问题是有效可行的。
In view of the real-time dynamic ,high efficiency and the stability requirement of operational decision in air defense combat ,a cuckoo algorithm based on population coevolution model is proposed .On the basis of the less parameters, easy to implement and better global search of the cuckoo algorithm , aiming at the problem of convergence speed , the model of population co-evolution is established .By adding the immune mechanism and using gauss mutation operator ,the convergence efficiency and evolution of the algorithm is improved . The simulation results show that the improved cuckoo algorithm is capable of distributing the firepower effectively and quickly, the method has certain feasibility.
出处
《火力与指挥控制》
CSCD
北大核心
2018年第1期62-66,共5页
Fire Control & Command Control
关键词
目标分配
布谷鸟算法
种群协同进化
高斯变异
weapon-target assignment (WTA), cuckoo search algorithm, population co-evolution,gauss mutation