期刊文献+

鼠李糖乳酸杆菌降解肌酐和尿酸的活力研究 被引量:2

Lactobacillus rhamnosus mutants in degrading activity of creatinine and uric acid
下载PDF
导出
摘要 目的探讨不同条件下诱导和诱变培养鼠李糖乳酸杆菌降解肌酐和尿酸的活力改变。方法在含不同浓度的尿毒症患者混合血清的MRS培养基中诱导培养鼠李糖乳杆菌后,选取降解肌酐和尿酸能力最强的菌株行硫酸二乙酯及紫外线双重多次诱变,测定其肌酐和尿酸降解活力,选出降毒素能力最强的菌株进行遗传稳定性测定。结果 (1)鼠李糖乳酸杆菌诱导420代后开始出现肌酐降解作用,尿酸的降解作用在诱导培养后第390代开始增高,2种毒素均在诱导第480代时降解能力最强。(2)诱导后的乳酸杆菌经过硫酸二乙酯和紫外线复合诱变降解尿毒症毒素的活力明显的提高,其中第5次诱变肌酐的降解活力提升了64.56活力单位(P<0.05);尿酸的降解活力提升了77.66活力单位(P<0.05)。(3)遗传稳定性结果示培养第1代肌酐降解活力127.12活力单位,尿酸降解活力157.55活力单位,第5代分别是127.33、157.32活力单位,没有回复突变。结论诱导后鼠李糖乳酸杆菌经硫酸二乙酯及紫外线双重诱变后能明显的提高肌酐和尿酸的降解能力,且稳定性较好。 Objective To determine the effect of Lactobacillus rhamnosus on the degradation of creatinine and uric acid activity by different inductions and compound mutations. Methods Original Lactobacillus rhamnosus was cultured with different serum levels from uremic patients and then mutated by physical (ultraviolet) and chemical (diethyl sulfate) methods repeatedly. We selected the strains which decreased the concentration of the creatinine and uric acid most and measured its genetic stability. Results (1) The degradation of creatinine occurred in the 420th generation, while degradation of uric acid in the 390th in uremic patients. Lactobacillus rhamnosus degraded both creatinine and uric acid most obviously in the 480th generation. (2) After 5 times of mutation by physical (ultraviolet) and chemical (diethyl sulfate) methods, the Lactobacillus rhamnosus had greater degradation capacity of creatinine and uric acid, and the degradation capacity was increased by 64.56 activity unit and 77.66 activity unit for creatinine or uric acid respectively. (3) The genetic stability of creatinine and uric acid degradation showed that the capacity of creatinine was 127.12 activity unit and that of uric acid was 157.55 activity unit in the first generation, while 127.33 and 157.32 activity unit in the 5th generation respectively, with no reverse mutation. Conclusion After directional induction and compound mutation, Lactobacillus rhamnosus has greater capacity in degrading the creatinine and uric acid.
出处 《中南药学》 CAS 2018年第1期60-64,共5页 Central South Pharmacy
关键词 鼠李糖 乳酸杆菌 肌酐 尿酸 Lactobacillus rhamnosus mutant creatinine uric acid
  • 相关文献

参考文献6

二级参考文献58

  • 1冯泳兰.检验乙醛的一种简便方法[J].衡阳师范学院学报,1990(3):41-43. 被引量:1
  • 2徐惠娟,Peter Dürre,粱翠谊,许敬亮,袁振宏.Clostridium ljungdahlii乙醛铁氧还蛋白氧化还原酶基因插入失活载体的构建[J].化工进展,2012,31(S1):523-523. 被引量:1
  • 3Wei-Yan Cai,You-Yi Gu,Ai-Min Li,Huan-Qin Cui,Yi Yao.Effect of alprostadil combined with Diammonium glycyrrhizinate on renal interstitial fibrosis in SD rats[J].Asian Pacific Journal of Tropical Medicine,2014,7(11):900-904. 被引量:8
  • 4刘广桢,陈建华,王旻.尿酸酶产生菌的筛选、基因克隆及表达[J].中国药科大学学报,2005,36(5):464-467. 被引量:10
  • 5杨洁彬,李淑高,张篪,等.食品微生物[M].北京:北京农业大学出版社,1989:158.
  • 6N. Itoh, A. Kusaka, T. Hirota, et al. Microbial production of antibiotic fosfomycln by a stereoselective epoxidation and its formation mechanism[J]. Appl Microbiol Biotechnol, 1995, 43: 394-401.
  • 7Kumar S, Parvathi A, Hemandez RL, et al. Identification of a novel UDP - N - acetylgucosamione enolpyruvyl transferase (MurA) horn Vibrio fischefi that confers high fosfomycin resistance in Escherichia coil[J]. Arch Microbiol, 2009 May, 191(5): 425-429.
  • 8Ryan D, Woodyer, Gongyong Li,et al. New insight into the mechanism of methyl transfer during the biosynthesis of fosfomycin[J]. Chemical Communication, 2007, 359-361.
  • 9JOHN R P,NAMPOOTHIRI K M, PANDEY A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives [J]. Appl Microbiol Biotechnol, 2007,74 : 524-534.
  • 10Oberhelman R A, Cilman R H, Sheen P, et al. A place- bocontrolled trail of LactobaciUus GG to prevent diarrhea in undernourished Peruvian children [J] . International Jour- nal of Food microbiology, 1999, 134 (1): 15-20.

共引文献24

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部