期刊文献+

关于处处可断图类的最大谱半径

On the Maximum Spectral Radius of the Class of Everywhere Separable Graphs
下载PDF
导出
摘要 以复杂网络研究为背景,讨论了处处可断图类在复杂网络分析中的应用.通过研究处处可断图类的性质,刻画了该类图的一些基本拓扑结构,研究了处处可断图类的代数结构.利用图的顶点划分方法,证明了当谱半径达到最大时该图类的极图,并给出了该图类谱半径的一个上界. Based on the research of complex networks, the applications of the class of everywhere separable graphs were discussed. Through the investigation on the properties of this class of graphs, some fundamental topological structures of this class of graphs were obtained. The algebraic structures of this class of graphs were researched. Making use of the method of vertex partitioning of graphs, the extrereal graph is attained as the spectral radius of everywhere separable graphs reach to its maximum. An upper bound of the maximum spectral radius is found.
作者 武建
出处 《中北大学学报(自然科学版)》 CAS 2018年第1期32-37,共6页 Journal of North University of China(Natural Science Edition)
关键词 图论 顶点划分 谱半径 复杂网络 处处可断图 graph theory vertex partitioning spectral radius complex network everywhere separable graph
  • 相关文献

参考文献3

二级参考文献17

  • 1Brualdi R A,Solheid E S.On the spectral radius of complementary acyclic matrices of zeros and ones[J].SIAM Journal Algebraic and Discrete Method,1986,7:265-272.
  • 2Liu Huiqing,Lu Mei,Tian Feng.On the spectral radius of graphs with cut edges[J].Linear Algebra and its Applications,2004,389:139-145.
  • 3Abraham Berman,Zhang Xiao-dong.On the spectral radius of graphs with cut vertices[J].J Combin Theory Ser B,2001,83:233-240.
  • 4Body J A,Murty U S R.Graph Theory with Applications[M].London:Macmillan Press,1976.
  • 5Mohar B,Woess W.A Survey on Spectra of Infinite Graphs[J].Bull London Math Soc,1989,21:209-234.
  • 6邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 7李乔 冯克勤.论图的最大特征根[J].应用数学学报,1979,2(2):167-175.
  • 8Boesch F,Tindell R.Circulants and their connectivities[J].Journal of Graph Theory,1984,8(4):487.
  • 9Mader W.Uber den zusammenh ng symmetrischer graphen[J].Arch Math(Basel),1970,21:331.
  • 10Mader W.Eine eigenschaft der atome endlicher graphen[J].Arch Math(Basel),1971,22:333.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部