摘要
对象建议算法(object proposals)是对象检测中的常用算法,用于快速定位物体区域。根据自然场景文本的特点,将对象建议算法应用到文本检测中,并与经典的最稳定极值区域算法相结合;然后,通过贝叶斯模型融合了笔画宽度特征、视觉散度特征和边缘梯度特征,并将文本和非文本区域的区分问题转换成一个二值标记问题,通过最小化能量函数寻找最佳标记;最后,通过均值漂移聚类寻找文本区域的中心生成文本行。经实验证明,本算法在常用的自然场景文本检测数据集上速度得到了提高,并且一定程度上解决了传统最稳定极值区域算法对光照敏感的问题,获得了较高的查全率。
Object proposals is often used in object detection. This paper applied object proposals to text detection and was combined with maximally stable extremal region ( MSER ) by analyzing the text feature in natural scene. And then it used stroke width, perceptual divergence, histogram of gradients at edges and a Bayesian method for their integration. And it casted the task of separating characters from non-characters as a binary labeling problem, minimizing an energy function to find the best label. Finally it used Mean-Shift to find the text line. Experiments show that, this algorithm increases the detecting speed, and it solves the problems that MSER is sensitivity to blur and uneven illumination,increase the recall in a sense.
出处
《计算机应用研究》
CSCD
北大核心
2018年第2期624-627,636,共5页
Application Research of Computers
基金
国家科技支撑计划资助项目(2014BAH30B01)
国家自然科学基金资助项目(61379151)