期刊文献+

准静态拉伸过程中CoCrFeMnNi高熵合金显微组织的演变 被引量:5

Microstructure evolution of CoCrFeMnNi high-entropy alloy during quasi-static tensile
下载PDF
导出
摘要 采用电子背散射衍射技术,研究室温下CoCrFeMnNi高熵合金在准静态单向拉伸(应变速率为1×10^(-1)s^(-1))过程中显微组织的演变。结果表明:合金的变形机制主要是位错的滑移,同时伴随着少量的孪生。当应变约为0.81%时,合金开始出现新的Σ3孪晶界。晶向<001>附近的拉伸轴向<001>方向转动,形成弱的<001>//RD丝织构,符合Toylor模型,晶粒拉伸轴向<001>-<111>连线转动,符合Sachs模型。晶粒尺寸显著影响晶粒的转动速率,小尺寸晶粒转动最快,大尺寸晶粒次之,中等尺寸晶粒转动最慢。晶粒Schmid因子越大,晶粒的转动越快。 The evolution of microstructure of CoCrFeMnNi high-entropy alloy during quasi-static tensile (strain rate 1×10-1 s-1) were investigated using electron backscatter diffraction technology. The results show that the dominant deformation mechanism is dislocation gliding, which is accompanied with less twinning. The alloy generates new Σ3 twin boundaries when the strains is 0.81%. The tensile axes close to 〈001〉 rotate toward 〈001〉 and form a weak 〈001〉//RD fiber texture following Toylor model. The tensile axes rotate to the line of 〈001〉-〈111〉 following Sachs model, the grain size influences the rotational speed of grains. The rotational speed of small grain is the fastest than big grains and medium grains, and the medium grain is the slowest than other grains. The bigger Schmid factor of grain is, the faster grain rotation is.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2018年第1期135-141,共7页 The Chinese Journal of Nonferrous Metals
基金 福建省高校产学合作项目(2014H6005)~~
关键词 高熵合金 背散射电子衍射 微观组织 准静态拉伸 晶粒转动 high-entropy alloy electron backscatter diffraction technology microstructure quasi-static tensile grain rotation
  • 相关文献

参考文献4

二级参考文献25

  • 1许惠斌,闫久春,杨士勤.SiCp/ZL101A复合材料非真空振动液相扩散焊下微观孔洞闭合及氧化膜行为[J].机械工程学报,2005,41(7):152-157. 被引量:3
  • 2A L Greer.Confusion by design[J].Nature,1993.366(25):303-304.
  • 3J W Yeh,S K Chen,S J Lin.Nanostructured high entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004.6(5):299-303.
  • 4Q H Tang,Y Huang,Y Y Huang,et al.Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J].Materials Letters,2015.151:126-129.
  • 5Y Zhang,T T Zuo,Z Tang,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014.61(8):1-93.
  • 6L Jiang,Y P Lu,Y Dong,et al.Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot[J].Intermetallics,2014.44(1):37-43.
  • 7H Zhang,Y Z He,Y Pan.Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5high-entropy alloy by martensite strengthening[J].Scripta Materialia,2013.69(4):342-345.
  • 8W H Liu,Y Wu,J Y He,et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J].Scripta Materialia,2013.68(7):526-529.
  • 9B Cantor,I T H Chang,P Knight,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004.375(21):213-218.
  • 10F Otto,A Dlouhy,C Somsen,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013.61(15):5743-5755.

共引文献47

同被引文献53

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部