期刊文献+

基于电化学热耦合模型的锂离子动力电池极化特性 被引量:7

Polarization characteristics of lithium ion power battery based on electrochemical-thermal model
下载PDF
导出
摘要 基于电化学热耦合模型,定量分析了磷酸铁锂动力电池不同倍率放电下正负极欧姆极化、浓差极化和活化极化。结果表明:1C放电初期,正极固相浓差极化波动最大,峰值达到147 mV;放电中期,各类型极化变化曲线较为平稳,活化极化最大,约为48 mV;放电末期,负极活化极化和负极固相浓差极化迅速增大;8C放电末期,正极固相浓差极化急剧增加,达到715 mV。提高放电倍率,活化极化的大幅增加是高倍率下极化严重的最主要原因,且负极活化极化的增加幅度比正极活化极化更大;而减小负极颗粒粒径可以有效减小负极活化极化。 An electrochemical-thermal model was developed to quantitative analysis ohmic polarization, concentration polarization and activation polarization of positive and negative electrodes at different discharge rates. The results show that concentration polarization of positive is the main constituent part at the beginning of 1 C rate discharge, which also shows the biggest fluctuation range. Various polarizations change less in the middle of 1 C rate discharge, but at the end ohmic polarization and activation polarization of negative rapidly increase. Concentration polarization of solid phase in positive electrode increases dramatically to 715mV at the end of 8C rate discharge. The aggravation of activation polarization is the main cause of large polarization with discharge rate raised, and the activation polarization of negative electrode is worse than that of positive. It is effective to remit activation polarization of negative by reducing particle sizes of negative electrode.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2018年第1期142-149,共8页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(51774343)~~
关键词 锂离子电池 欧姆极化 浓差极化 活化极化 数值仿真 lithium ion battery ohmic polarization concentration polarization activation polarization numericalsimulation
  • 相关文献

参考文献2

二级参考文献42

  • 1SCOSATI B, GARCHE J. Lithium batteries: Status, prospectsand future[J]. Journal of Power Sources, 2010, 195: 2419-2430.
  • 2NYMAN A, ZAVALIS T G, ELGER R, BEHM M, LINDBERGH G. Analysis of the polarization in a Li-ion battery cell by numerical simulations[J]. Journal of the Electrochemical Society, 2010, 157(11): 1236-1246.
  • 3DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/ insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
  • 4DOYLE M, NEWMAN J,GOZDZ A S, SCHMUTZ C N, TARASCON J M. Comparison of modeling predictions with experimental from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
  • 5DOYLE M, NEWMAN J. The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochima Acta, 1995, 40(13): 2191-2196.
  • 6ALBERTUS P,CHRISTENSEN J,NEWMAN J. Experiments on and modeling of positive electrodes with multiple active materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156(7): A606-A608.
  • 7STEWART S, ALBERTUS P, SRINIVASAN V, PLITZ I, PEREIRA N, AMATUCCI G, NEWMAN J. Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate[J]. Journal of the Electrochemical Society, 2008, 155(3): 253-261.
  • 8KUMARESAN K, SIKHA G, WHITE R E. Thermal model for a li-ion cell[J]. Journal of the Electrochemical Society, 2008, 155(2): 164-171.
  • 9STAMPS A, HOLLAND E, WHITE R E, GATZKE E P. Analysis of capacity fade in a lithium ion batter[J]. Journal ofPower Sources, 2005, 150(4): 229-239.
  • 10BOTTE G, WHITE R E. Modeling lithium intercalation in a porous carbon electrode[J]. Journal of the Electrochemical Society, 2001, 148(1): 54-66.

共引文献15

同被引文献58

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部