期刊文献+

蒸汽发生器传热管在泵致脉动压力载荷下的动力学响应研究 被引量:1

Study on Dynamic Response of Steam Generator Heat Transfer Tube under Pump-induced Pressure Pulsation
下载PDF
导出
摘要 泵致脉动压力是核电站中引起主设备部件疲劳失效的主要原因之一。本文建立了蒸汽发生器传热管的泵致脉动压力载荷表达式,并建立不同弯曲半径的传热管有限元模型,对蒸汽发生器传热管在泵致脉动压力载荷下的动力学响应进行了研究。结果表明:34、64、94、114、124、144排传热管附近的频率、振型对泵致脉动压力最为敏感;包络泵致脉动压力作用下,最大应力出现在32排传热管上;传热管在泵致脉动压力载荷作用下,泵致脉动压力载荷的轴频频率对结构响应的贡献最大。本文分析结果为蒸汽发生器传热管在泵致脉动压力载荷下的磨损分析提供了参考。 Pump-induced pressure pulsation is a main factor that caused the fatigue failure of equipments in the nuclear power plants.In this paper,functions for the pumpinduced pressure pulsation in the heat transfer tubes of the steam generator were derived and the finite element model for all heat transfer tubes with different bending radii was established.Based on these models the dynamic behavior of heat transfer tubes under the pump-induced pressure pulsation was studied.The results show that the frequency and mode of the heat transfer tubes of row 34,64,94,114,124 and 144 are the most sensitive to the pump-induced pressure pulsation.The maximum stress appears on the heat transfer tube of row 32 under the enveloped pump-induced pressure pulsation,and the rotation frequency of the pump-induced pulsating pressure load has the greatest contribution to the structure response under the pump-induced pressure pulsation.This paper offers a reference for wear analysis of heat transfer tubes in steam generator under pump-induced pressure pulsation.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2018年第2期269-275,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(51606180)
关键词 传热管 脉动压力 谐响应 流致振动 heat transfer tube pressure pulsation harmonic response flow-induced vibration
  • 相关文献

参考文献6

二级参考文献34

  • 1张宇宁,刘树红,吴玉林,杨建明.应用新型导叶的混流式水轮机DES模拟[J].工程热物理学报,2007,28(z1):139-141. 被引量:5
  • 2马辉,周文建,闻邦椿.核电站反应堆冷却剂泵的模态分析[J].机械制造,2006,44(10):14-17. 被引量:10
  • 3蔡龙,张丽平.浅谈压水堆核电站主泵[J].水泵技术,2007(4):1-5. 被引量:54
  • 4Rzentkowski G, Zbroja S. Acoustic characterization of a CANDU primary heat transport pump at the blade-pas- sing frequency[ Jl. Nuclear Engineering Design, 2000, 196(1) : 63 -68.
  • 5In Soo Koo, Whan Woo Kim. The development of reac- tor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant [ J]. ISA Transac- tions, 2000,39(3) : 309 -316.
  • 6. Kazem Farhadi, Anis Bousbia-salah, Franseeso D Auria. A model for the analysis of pump start-up transients in Tehran research reactor [ J ]. Progress in Nuclear Ener- gy, 2007, 49(7) :499 -510.
  • 7Martin W Trethewey, Joshua C Friell. A spectral simu- lation approach to evaluate probabilistic measurement precision of a reactor coolant pmnp torsional vibration shaft crack monitoring system[ J]. Journal of Sound and Vibration, 2008, 310(4/5 ) : 1036 - 1056.
  • 8Muggli F A. CFD calculation of a mixed flow pump characteristic from shut-off to maximum flow E C //Pro- ceedings of the ASME Fluids Engineering Division Sum- mer Meeting,2003:249 - 254.
  • 9Untaroiu A, Throckmorton A L, Patel S M, eta]. Nu- merical and experimental analysis of an axial flow left ventrieular assist device:The influence of the diffuser on overall pump performance [ J ]. Artificial Organs, 2005, 29(7) :581 -591.
  • 10Yao Zhifeng, Wang Fujun, Xiao Ruofu, et al. Experi- mental investigation of relationship between pressure fluctuations and vibrations for a double suction centrifu- gal pump[ C ]//Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu, Japan: [ s. n. ] , 2011:61 -68.

共引文献63

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部