期刊文献+

基于WGOTHIC程序的非能动安全壳冷却系统传热特性分析 被引量:1

Analysis of the Heat Transfer Phenomenon in Passive Containment Cooling System Based on WGOTHIC
下载PDF
导出
摘要 本文基于WGOTHIC程序对非能动安全壳冷却系统(Passive Containment Cooling System,简称PCS)原型及其整体性能试验台架进行建模,分析了基准工况和恶劣工况下安全壳内的压力变化和传热特性变化过程。结果表明:恶劣工况下PCS系统的冷却能力受到了一定限制,使安全壳在事故初期的冷却降压速率略有下降,但从长期来看仍可有效实现安全壳的降温降压。事故后安全壳内热阱吸热速率迅速下降,通过安全壳内壁面冷凝吸收的热量比例逐渐增大,最终通过安全壳壳体壁面"冷凝—导热—蒸发"通道载出能量的速率和事故中破口输入能量的速率将达到平衡。 To verify the cooling capacity margin of passive containment cooling system (PCS), the calcu- lating model of test facility and PCS prototype are established respectively using dedicated containment safety analysis program WGOTHIC. The development of pressure inside containment and change process of heat transfer characteristics in base and severe accident condition were gotten from the calculation. The analysis results show that : as the PCS appliance is limited during the severe accident condition, the depres-surization rate inside containment decreases slightly in the early accident, however the containment can still be cooled down effectively in the long term. The heat absorption rate of thermal conductor decreases rap-idly after the outer shell cooling water coverage established, but the condensation heat transfer rate inner shell wall increases gradually. Finally, a balance would be made up between the energy carried out by condensation-evaporation at the shell wall and the energy released by loss of coolant accident
出处 《核安全》 2017年第4期71-77,共7页 Nuclear Safety
基金 国家科技重大专项 项目编号:2015ZX06002007
关键词 非能动安全壳 比例分析 传热特性 整体试验台架 Passive Containment Cooling System scaling analysis heat transfer phenomenon integral test facility
  • 相关文献

参考文献10

二级参考文献75

  • 1Hoch.,LE,陈世君.AP600非能动堆芯事故冷却系统整体试验[J].国外核动力,1996,17(2):1-13. 被引量:2
  • 2HSU Y Y, WANGZY, UNALC, et al. Scal- ing modeling for small break LOCA test facilities [J]. Nuclear Engineering and Design, 1990, 122 (1-3): 175-194.
  • 3KOCAMUSTAFAOGULLARI G, ISHII M. Scaling criteria for two-phase flow natural and forced convection loop and their application to conceptual 2 X 4 simulation loop design, NUREG/CR-3420, ANL83-61 [R].America: Argonne National Laboratory, 1983.
  • 4秦本科,李玉全,张子扬,等.非能动堆芯冷却系统整体性能试验台架比例设计报告[R].北京:国家核电技术研发中心,2010.
  • 5NAHAVANDI A N, CASTELLNAN F S, MO- RADKHANIAN E N. Scaling laws for modeling nuclear reactor systems[J]. Nuclear Science and Engineering, 1979, 72(1): 75-83.
  • 6ZUBER N, WILSON G E, ISHII M, et al. An integrated structure and scaling methodology for severe accident technical issue resolution: Devel- opment of methodology[J]. Nuclear Engineering and Design, 1998, 186(1): 1-21.
  • 7Jr REYES J N, HOCHREITER L. Scaling anal ysis for the OSU AP600 facility(APEX)[J].Nu clear Engineering and Design, 1998, 186(1): 53-109.
  • 8KOCAMUSTAFAOGULLARI G, ISHII M. Scaling of two-phase flow transients using re- duced pressure system and stimulantfluid[J]. Nuclear Engineering and Design, 1987, 104(2) : 121-132.
  • 9PARK H S, CHOI K Y, CHO S. Major findings from LBLOCA reflood tests using the ATLAS facility[J]. Nuclear 2010, 240(12): 3 920 Engineering and Design, 3 929.
  • 10ISHII M, REVANKAR S T, LEONARDI T, et al. The threeqevel scaling approach with applica- tion to the Purdue University Multi Dimensional Integral Test Assembly (PUMA)[J].uclear Engineering and Design, 1998, 186(1-2): 177-211.

共引文献34

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部