摘要
研究了含次临界Sobolev指数的半线性合作椭圆型方程组,在不同情况下得到了方程组非平凡解的存在性.当在0<λ<λ_1时,定义能量泛函J(u,v)以及Nehari流形N_λ.首先说明泛函J(u,v)有下界,且有一个极小值点,于是在Nehari流形里存在临界点,进而说明方程组在Banach空间E中存在非平凡解.当λ_k<λ<λ_(k+1)时,泛函满足局部环绕定理中的条件,于是得到方程组至少存在一个非平凡解的结论.
One cooperative semilinear elliptic systems involving subcritical Sobolev exponents was investigated. The existence of nontrivial solution to the systems was obtained under different cases. In the case 0〈λ〈λ1, through defining the functional and the corresponding Nehari manifold, we got that the functional J (u,v) was bounded below. Then it proved that the functional had a minimizer, so the functional had a nontrivial critical point in the Nehari manifold and the problem had a nontrivial solution in E. In the case λk〈λ〈λk+1, the functional satisfied the conditions of local linking theorem. It draws the conclusion that there exists at least one nontrivial solution.
作者
樊自安
寇继生
FAN Zi-an;KOU Ji-sheng(School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, Chin)
出处
《中北大学学报(自然科学版)》
北大核心
2017年第6期576-581,共6页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金资助项目(11301163)
湖北省教育厅科学研究计划项目(B2015032)