期刊文献+

含次临界Sobolev指数半线性合作椭圆方程组非平凡解的存在性

Existence of Nontrivial Solutions of the Semilinear Cooperative Elliptic Systems Involving Subcritical Sobolev Exponents
下载PDF
导出
摘要 研究了含次临界Sobolev指数的半线性合作椭圆型方程组,在不同情况下得到了方程组非平凡解的存在性.当在0<λ<λ_1时,定义能量泛函J(u,v)以及Nehari流形N_λ.首先说明泛函J(u,v)有下界,且有一个极小值点,于是在Nehari流形里存在临界点,进而说明方程组在Banach空间E中存在非平凡解.当λ_k<λ<λ_(k+1)时,泛函满足局部环绕定理中的条件,于是得到方程组至少存在一个非平凡解的结论. One cooperative semilinear elliptic systems involving subcritical Sobolev exponents was investigated. The existence of nontrivial solution to the systems was obtained under different cases. In the case 0〈λ〈λ1, through defining the functional and the corresponding Nehari manifold, we got that the functional J (u,v) was bounded below. Then it proved that the functional had a minimizer, so the functional had a nontrivial critical point in the Nehari manifold and the problem had a nontrivial solution in E. In the case λk〈λ〈λk+1, the functional satisfied the conditions of local linking theorem. It draws the conclusion that there exists at least one nontrivial solution.
作者 樊自安 寇继生 FAN Zi-an;KOU Ji-sheng(School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, Chin)
出处 《中北大学学报(自然科学版)》 北大核心 2017年第6期576-581,共6页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11301163) 湖北省教育厅科学研究计划项目(B2015032)
关键词 次临界Sobolev指数 合作椭圆方程组 NEHARI流形 局部环绕定理 subcritical Sobolev exponents cooperative elliptic systems Nehari manifold local linking theorem
  • 相关文献

二级参考文献22

  • 1Caffarell L, Kohn R, Nirenberg L. First order interpolation inequalities with weights. Compos Math, 1984, 53:259-275.
  • 2Xuan B. The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Anal, 2005, 62:703-725.
  • 3Alves C O, E1 Hamidi A. Nehari manifold and existence of positive solutions to a class of quasilinear problems. Nonlinear Anal, 2005, 60:611-624.
  • 4Brown K J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc Var, 2005, 22:483-494.
  • 5Brown K J, Wu T F. On semilinear elliptic equations involving concave-convex nonlinearities and sign- changing weight function. J Math Anal Appl, 2006, 318:253-270.
  • 6Brown K J, Wu T F. A fibering map approach to a semilinear elliptic boundary value problem. Electron J Different Equat, 2007, 69:1-9.
  • 7Brown K J, Wu T F. Multiplicity of positive solution of p-Laplacian problems with sign-changing weight function. Int J Math Anal, 2007, 1(12): 557-563.
  • 8Brown K J, Wu T F. A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function. J Math Anal Appl, 2008, 337:1326-1336.
  • 9Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlin- eaxities. Nonlinear Anal, 2009, 71:2688-2698.
  • 10Rodrigues R S. On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function. Nonlinear Anal, 2010, 73:857-880.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部