摘要
研究了一类Kirchhoff型方程基态解的存在性.非线性项f(u)形如|u|^(p-2 )u(4<p<6)的一类Kirchhoff型方程已经被广泛研究,但是由于非线性项f(u)形如|u|^(p-2 )u(2<p<6)不满足AmbrosettiRabinowitz条件,故证明Palais-Smale序列的有界性成为证明基态解存在性的主要困难.本文运用经典的变分方法将山路定理结合Pohozaev恒等式证明了,在某种条件下即当非线性项f(u)形如|u|^(p-2 )u(2<p<6)时,一类Kirchhoff型方程基态解的存在性.
An explotation was made on the existence of ground-state solutions for a class of Kirchhoff type equations. Kirchhoff type equations with nonlinearity f(u)~|u|^p-2(2〈p〈6) has been studied ex- tensively. As f(u)~|u|^p-2(2〈p〈6) does not satisfy the Ambrosetti-Rabinowitz condition, the boundedness of Palais-Smale sequence becomes a major difficulty in proving the existence of ground-state solutions. According to the classical variational principle, the mountain-pass theorem and Pohozaev's i- dentity were used to show the existence of ground-state solutions for a class of Kirchhoff type equations under certain assumptions on the nonlinearity f(u), i.e. f(u) |u|^p-2(2〈p〈6).
作者
杨玉蓓
YANG Yu-bei(of Mechanical and Electrical Engineering, College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430074, Chin)
出处
《中北大学学报(自然科学版)》
北大核心
2017年第6期588-592,603,共6页
Journal of North University of China(Natural Science Edition)