期刊文献+

基于显著性检测的实时车载行人检测方法

Real Time Vehicle Pedestrian Detection Method Based on Saliency Detection
下载PDF
导出
摘要 针对车辆辅助驾驶系统中行人检测的实时性问题,提出了一种新的基于显著性检测和参数融合的LUT-HOG车载行人检测方法.在车载行人检测方法中提出基于多局部区域的空域调频对比度的显著性检测方法,快速标注图像中的"行人"区域;在"行人"区域,提出基于参数融合的LUT-HOG的快速行人特征提取算法;采用逼近线性SVM计算时间的AK-SVM进行高效分类.该算法通过使用显著性检测代替穷尽搜索办法,并用快速的行人特征提取和分类算法,能够大幅提高行人检测的速率.在Visual Studio 2012软件中使用C语言验证行人检测算法的正确性和实时性.基于INRIA数据库的测试结果表明,在不降低准确率的前提下,该行人检测系统可以达到25帧/秒(640×480)的检测速率.然后,将行人检测系统移植到BF-609的开发板上进行实时行人检测,在不使用GPU的前提下,可以达到20帧/秒的检测速度,可满足车载行人检测系统的实时性要求. A real-time vehicle pedestrian detection method was realized by using saliency detection and parameter fusion LUT-HOG (Look Up for Table-Histogram of Orientation Gradient). The saliency de tection based on the multi local region frequency-zone could annotate "pedestrian" zone quickly. In the "pedestrian" zone, the multi-parameter fusion L-HOG was proposed to extract the features quickly and AK-SVM (Additive Kernel Support Vector Machine) efficiently classified the objects, which has the same computational time with the linear SVM. This pedestrian detection system was evaluated with the C language in the Visual Studio 2012. The results based on the INRIA dataset show that this pedestrian detection can process 25 frames per second (640× 480) without sacrifice of accuracy. At last this system is transplanted to the BF-609 board to detect pedestrians. This vehicle system can process 20 frames per second and can be as the real time vehicle equipments without using the GPU.
作者 何栋 秦强 桂志国 HE Dong;QIN Qiang;GUI Zhi-guo(Department of Information Engineering, Shanxi Light Industry Vocational Technical College, Taiyuan 030013, China;School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
出处 《中北大学学报(自然科学版)》 北大核心 2017年第6期674-680,共7页 Journal of North University of China(Natural Science Edition)
关键词 机器视觉 车载行人检测 显著性检测 空域调频 梯度方向直方图 machine vision vehicle pedestrian detection saliency detection frequency-tuned histogram of orientation gradient (HOG)
  • 相关文献

参考文献1

二级参考文献46

  • 1Loupias E, Sebe N, Bres S, Jolion J M. Wavelet-based salient points for image retrieval. In: Proceedings of the 2000 IEEEInternational Conference on hnage Processing. Vancouver, British Columbia, Canada: IEEE, 2000, 2:518-521.
  • 2Jian M W, Dong J Y, Ma J. Image retrieval using wavelet- based salient regions. The Imaging Science Journal, 2011, 59(4): 219-2:31.
  • 3Guo C L, Zhang L M. A novel nmlti-resolution spatiotem- poral saliency detection model and its applications in image and video compression. IEEE Transactions on Image Pro- cessing, 2010, 19(1): 185-198.
  • 4Kim W, Kim C. A novel image importance model for content-aware image resizing. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brus- sels, Belguim: IEEE, 2011. 2469-2472.
  • 5Gupta R, Chaudhury S. A scheme for attentional video compression. In: Proceedings of the 4th International Con- ference on Pattern Recognition and Machine Intelligence. Berlin, Heidelberg: Springer-Verlag, 2011. 458-465.
  • 6Itti L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Tralsac- tions on Image Processing, 2004, 13(10): 1304-1318.
  • 7Kanan C, Cottrell G. Robust classification of objects, faces, and flowers using natural image statistics. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA: IEEE, 2010. 2472-2479.
  • 8Teuber H L. Physiological psychology. Annual Review of Psychology, 1955, 6:267-296.
  • 9Wolfe J M, Horowitz T S. What attributes guide the de- ployment of visual attention and how do they do it'? Nature Reviews Neuroscience, 2004, 5(6): 495-501.
  • 10Desimone R, Duncan J. Neural mechanisms of visual selec- tive attention. Annual Review of Neuroscience, 1995, 18(1 ): 193-222.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部