期刊文献+

基于词向量和情感本体的短文本情感分类 被引量:3

Short text sentiment classification:Based on the word vector and emotional ontology
下载PDF
导出
摘要 目前短文本情感分类主要采取统计自然语言处理、情感语义特性两种方式,而将这两种方式相结合进行情感分类的研究较少,故提出将这两种方式进行结合,设计基于词向量与情感本体相融合的短文本情感分类方法。首先利用Word2Vec模型训练词向量,以相加平均法合成短文本向量;在此基础上结合基于情感本体所得出的每条短文本的情感值,构建词向量与情感本体相融合的短文本表示模型;最后采用K最近邻分类算法完成短文本情感分类。相比传统的基于词向量、基于情感本体或其他单一技术路线的分类方法,词向量与情感本体相融合的分类方法在准确率、召回率、F1值均有明显的提升。 At p re se n t ,two ways are mainly adopted for short tex t sentiment classification: statistical Natural Language Processing and emotional semantic characterist ics, while the researches on the combination of the two methods is few. T h u s ,this paper will design a classification method th at is basedon the combination of word vector and emotional ontology is designed in this paper. F i r s t ly, the wordvector was trained by Word2Vec model and short text vector was synthesized by adding averaOn this b a s is, short tex t expression model which integrates word vector and emotional ontology was constructed by combining emotional value of each short te x t. E ven tua lly, short tex t sentiment classification was completed by using KNN algorithm. Compared with the traditional classification methods which are based on the word v e c tor ,emotional ontology, or some other single technical classification method combining word vector and emotional ontology gets an obvious improvement on precision, recall rate and F 1 value.
作者 王正成 李丹丹 WANG Zhengcheng;LI Dandan(School of Economics and Management,Zhejiang Sci-Tech Un iv ersity,Hangzhou 310018, China)
出处 《浙江理工大学学报(社会科学版)》 2018年第1期33-38,共6页 Journal of Zhejiang Sci-Tech University:Social Sciences
基金 国家自然科学基金项目(71271192)
关键词 短文本情感分类 词向量 情感本体 short text sentiment classification word vector emotional ontology
  • 相关文献

参考文献9

二级参考文献105

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3魏玖长,赵定涛.危机信息的传播模式与影响因素研究[J].情报科学,2006,24(12):1782-1785. 被引量:53
  • 4石晶,胡明,戴国忠.基于小世界模型的中文文本主题分析[J].中文信息学报,2007,21(3):69-75. 被引量:9
  • 5路斌,万小军,杨建武,等.基于同义词词林的词汇褒贬计算[C]//中国计算技术与语言问题研究-第七届中文信息处理国际会议论文集.北京:电子工业出版社,2007:17-23.
  • 6Balog K, Mishne G, de Rijke M. Why are they excited? identifying and explaining spikes in blog mood levels. In: Proceedings of the llth Conference of the European Chapter of the Association for Computational Linguistics: Posters and Demonstrations. Trento, Italy: Association for Computational Linguistics, 2006. 207-210.
  • 7EACL. The workshop on new text Wikis and blogs and other dynamic text sources [Online], available: http://www.sics. se/jussi/newtext/, March 22, 2009.
  • 8World Wide Web. The 3rd annual workshop on the weblogging ecosystem: aggregation, analysis and dynamics [On- line], available: http://www2006.org/workshops/#W16, May 10, 2008.
  • 9Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association. ACM Transactions on Information Systems, 2003, 21(4): 315-346.
  • 10Peter D. Tarney thumbs or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, USA: Association for Computational Linguistics, 2002. 417-424.

同被引文献39

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部