摘要
提出基于人工智能技术的多智能体服务链资源调度架构,设计一种基于强化学习的服务链映射算法。通过Q-learning的机制,根据系统状态、执行部署动作后的奖惩反馈来决定服务链中各虚拟网元的部署位置。实验结果表明,与经典算法相比,该算法有效降低了业务的平均传输延时,提升了系统的负载均衡情况。
A service chain resource scheduling architecture of multi-agent based on artificial intelligence technology was proposed. Meanwhile, a service chain mapping algorithm based on reinforcement learning was designed. Through the Q-learning mechanism, the location of each virtual network element in the service chain was determined according to the system status and the reward and punishment feedback after the deployment. The experimental results show that com-pared with the classical algorithms, the algorithm effectively reduces the average transmission delay of the service and improves the load balance of the system.
出处
《通信学报》
EI
CSCD
北大核心
2018年第1期90-100,共11页
Journal on Communications
基金
国家高技术研究发展计划("863"计划)基金资助项目(No.2015AA016101)
国家自然科学基金资助项目(No.61501042)
北京科技新星基金资助项目(No.Z151100000315078)~~
关键词
网络功能虚拟化
人工智能
服务链
强化学习
network function virtualization, artificial intelligence, service chain, reinforcement learning