期刊文献+

基于信任扩展和列表级排序学习的服务推荐方法 被引量:5

Trust expansion and listwise learning-to-rank based service recommendation method
下载PDF
导出
摘要 针对传统基于信任网络的服务推荐算法中信任关系稀疏以及通过Qo S预测值排序得到的服务推荐列表不一定最符合用户偏好等问题,提出基于信任扩展和列表级排序学习的服务推荐方法(TELSR)。在分析服务排序位置信息的重要性后给出概率型用户相似度计算方法,进一步提高相似度计算的准确性;利用信任扩展模型解决用户信任关系稀疏性问题,并结合用户相似度给出可信邻居集合构建方法;基于可信邻居集合,利用列表级排序学习方法训练出最优排序模型。仿真实验表明,与已有算法相比,TELSR在具有较高推荐精度的同时,还可有效抵抗恶意用户的攻击。 In view of the problem of trust relationship in traditional trust-based service recommendation algorithm, and the inaccuracy of service recommendation list obtained by sorting the predicted QoS, a trust expansion and listwise learning-to-rank based service recommendation method (TELSR) was proposed. The probabilistic user similarity compu-tation method was proposed after analyzing the importance of service sorting information, in order to further improve the accuracy of similarity computation. The trust expansion model was presented to solve the sparseness of trust relationship, and then the trusted neighbor set construction algorithm was proposed by combining with the user similarity. Based on the trusted neighbor set, the listwise learning-to-rank algorithm was proposed to train an optimal ranking model. Simula-tion experiments show that TELSR not only has high recommendation accuracy, but also can resist attacks from mali-cious users.
出处 《通信学报》 EI CSCD 北大核心 2018年第1期147-158,共12页 Journal on Communications
基金 国家自然科学基金资助项目(No.61303074 No.61309013) 河南省科技攻关计划基金资助项目(No.12210231003)~~
关键词 服务推荐 排序学习 概率型用户相似度 信任关系 service recommendation, learning-to-rank, probabilistic user similarity, trust relationship
  • 相关文献

参考文献7

二级参考文献87

  • 1兰继斌,徐扬,霍良安,刘家忠.模糊层次分析法权重研究[J].系统工程理论与实践,2006,26(9):107-112. 被引量:312
  • 2刘书雷,刘云翔,张帆,唐桂芬,景宁.一种服务聚合中QoS全局最优服务动态选择算法[J].软件学报,2007,18(3):646-656. 被引量:146
  • 3Yu Tao, Lin K J. Service selection algorithms for Web services with end-to-end QoS constraints [J]. Information Systems and E-Business Management, 2005, 3(2): 103-126.
  • 4Zeng Liangzhao, Benatallah B, Ngu A, et al. QoS-aware middleware for Web services composition [J]. IEEE Trans on Software Engineering, 2004, 30(5): 311-327.
  • 5Balke W T, Matthias W. Cooperative discovery for user- centered Web service provisioning [C] //Proc of Int Conf on Web Services. Las Vegas: CSREA Press, 2003.
  • 6Shao Lingshuang, Zhang Jing, Wei Yong, et al. Personalized QoS prediction for Web services via collaborative filtering [C] //Proe of the Int Conf on Web Services. Los Alamitos, CA: IEEE Computer Society, 2007.
  • 7Wu Guoquan, Wei Jun, Qiao Xiaoqian, et al. A Bayesian network based QoS assessment model for Web serviees[C]// Proc of IEEE Internationa Conf on Service Computing. Los Alamitos, CA: IEEE Computer Society, 2007.
  • 8Vu L H, Hauswirth M, Porto F, et al. A search engine for QoS-enabled discovery of semantic Web services[J].Int Journal of Business Process Integration and Management, 2006, 1(4): 244-255.
  • 9Hwang S Y, Wang Haojun, Tang Jian, et al. A probabilistic approach to modeling and estimating the QoS of Web services-based workflows [J].Information Sciences, 2007, 177(23) : 5484-5503.
  • 10Kokash N, Birukou A, D'Andrea V. Web service discovery based on past user experience[J]. Business Information Systems, 2007, 4439:95-107.

共引文献258

同被引文献58

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部