期刊文献+

基于压缩感知的光谱成像技术研究

Research on Spectral Imaging Technology Based on Compressive Sensing
下载PDF
导出
摘要 依据非成像型光谱仪工作特点,结合压缩感知采样和计算重构方法,本文提出了一种基于压缩感知的光谱成像方法。在光谱仪前端搭建压缩采样系统,完成场景的压缩光谱采样,实现光谱和空间分布数据的同时获取,结合计算压缩重构成像方法,实现场景的分波段成像。通过仿真结果和实验结果的分析,说明本文提出的方法的正确性和可行性,能够实现实际场景的光谱数据的压缩采样,并完成指定波段的图像重构。 According to the working characteristics of non-imaging spectrometer, combined with compressed sensing sampling and reconstruction method, this paper presents a spectral imaging method based on compressed sensing. In the front end of the spectrometer, a compression sampling system is set up to complete the compressed spectrum sampling of the scene and achieve the simultaneous acquisition of spectral and spatial distribution data. Combined with the calculation method of the compression reconstruction imaging, the sub-band imaging of the scene is realized. Through the analysis of simulation results and experimental results, the correctness and feasibility of the proposed method are demonstrated. It can achieve the spectral data compression sampling of actual scene and complete the image reconstruction of the specified band.
出处 《价值工程》 2018年第7期207-209,共3页 Value Engineering
关键词 光谱仪 压缩感知 分波段成像 图像重构 spectrometer compressive sensing sub-band imaging image reconstruction
  • 相关文献

参考文献3

二级参考文献21

  • 1钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,16(2):1-6. 被引量:33
  • 2束炯,王强,孙娟.高光谱遥感的应用研究[J].华东师范大学学报(自然科学版),2006(4):1-10. 被引量:14
  • 3许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工程,2007,36(1):13-17. 被引量:98
  • 4Wilson R A .The Remote Surveillance of Forest Fires. Applied Optics[J]. 1966,5(6):899-904,.
  • 5Susskind J,Rosenberg J. Remote Sensing of Atmospheres and Oceans[M].New York:Academic Press, 1980.
  • 6Li S, Zhang X J, Zhu Y Q, et al. A Study on Remote Sensing Key Technologies of National Monitoring Resource,Ecological and Environment[J].IEEE International Geoscience and Remote Sensing Symposium,2005,3:1814-1817.
  • 7Candes E. International Congress of Mathematics[R]. 2006:1433 -1452.
  • 8Candes E, Romberg J, Tao T.Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J], IEEE Trans. on Information Theory, 2006,52(2):489-509.
  • 9Candes E, Romberg J. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [J]. Foundations of Comput, 2006,6(2):227-254.
  • 10Donoho D L.Compressed sensing[J].IEEE Trans. on Information Theory, 2006,52(4):1289 -1306.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部