期刊文献+

概念格中基于粗糙熵的属性约简方法 被引量:4

Rough Entropy Based Algorithm for Attribute Reduction in Concept Lattice
下载PDF
导出
摘要 属性约简是概念格理论的研究重点内容之一。通过将粗糙熵引入概念格理论中,定义了一种粗糙熵约简。首先,基于所有概念外延定义了形式背景的粗糙熵,并分析了它的性质;其次,定义了形式背景的粗糙熵约简,并揭示了粗糙熵约简与概念格约简之间的关系;在此基础上,基于属性重要度设计了计算粗糙熵的启发式算法,并通过实验验证了该算法的有效性。 Attribute reduction is one of the crucial issues in the theory study of concept lattice.In this paper,rough entropy was introduced to conduct a kind of attribute reduction.Firstly,rough entropy in a formal context was defined via the whole set of all concept extents,and the properties of rough entropy were analyzed.Secondly,a rough entropy based attribute reduction of a formal context was given,and the relationship between the rough entropy-based reduct and the concept lattice-based reduct was revealed.Based on this,a heuristic algorithm based on the attribute significance was proposed to compute a rough entropy-based reduct,and some numerical experiments were conducted to show the efficiency of the proposed methods.
出处 《计算机科学》 CSCD 北大核心 2018年第1期84-89,共6页 Computer Science
基金 国家自然科学基金项目(61502144 61573127 61672206 71571062) 河北省高等学校自然科学基金项目(QN2017095 QN2016133) 河北省高校创新团队领军人才培育计划项目(LJRC022) 河北省博士后择优资助科研项目(B2016003013) 河北师范大学博士基金项目(L2017B19 L2015B01)资助
关键词 概念格 属性约简 启发式算法 粗糙熵 Concept lattice Attribute reduction Heuristic algorithm Rough entropy
  • 相关文献

参考文献4

二级参考文献42

  • 1张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 2吴强,周文,刘宗田,陈慧琼.基于粗糙集理论的概念格属性约简及算法[J].计算机科学,2006,33(6):179-181. 被引量:10
  • 3史忠植.知识发现.北京:清华大学出版社,2002(Shi Zhongzhi. Knowledge Discovery ( in Chinese ) . Beijing:Tsinghua University Press, 2002)
  • 4R Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In: I Rival ed. Ordered Sets. DordrechtBoston: Reidel, 1982. 445~470
  • 5R Godin, G Mine au, R Missaoui, et al. Applying concept formation methods to software reuse. International Journal of Knowledge Engineering and Software Engineering, 1995, 5 ( 1 ):119~ 142
  • 6G W Mineau, R Godin. Automatic structuring of knowledge bases by conceptual clustering. IEEE Trans on Knowledge and Data Engineering, 1995, 7(5): 824~828
  • 7C Carpineto, G Romano. A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning,1996, 24(2): 95~122
  • 8R Cole, P Eklund. Scalability in formal concept analysis.Computational Intelligence, 1999, 15( 1 ): 11 ~ 27
  • 9R Cole, P Eklund, G Stumme. CEM-A program for visualization and discovery in email. In: The 4th European Conf on Principles and Practice of Knowledge Discovery in Databases.Berlin: Springer-Verlag, 2000
  • 10R Godin, R Missaoui. An incremental concept formation approach for learning from databases. Theoretical Computer Science, 1994,133:387~419

共引文献271

同被引文献32

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部