期刊文献+

基于广义形态滤波和MRSVD的故障诊断方法研究 被引量:3

Research on fault diagnosis method based on generalized morphological filter and MRSVD
下载PDF
导出
摘要 为了从复杂工况下获取滚动轴承故障信息,提出了一种基于广义形态滤波和多分辨奇异值分解(MultiResolution Singular Value Decomposition,MRSVD)相结合的方法。首先利用广义形态学滤波方法对振动信号进行降噪预处理;然后利用MRSVD对降噪后的振动信号进行分解;最后通过峭度准则选取故障特征最丰富的细节信号,并对其进行Hilbert包络谱分析。将提出的方法应用于滚动轴承的故障检测,实验结果表明该方法能清晰地提取故障特征信息。 In order to obtain the fault information of rolling bearing under complicated working conditions, a method based on generalized morphological filter and Multi-Resolution Singular Value Decomposition(MRSVD)for fault diagnosis is proposed in this paper. Firstly, the bearing vibration signals are de-noised by using generalized morphological filter.Then the filtered signals are decomposed into a series of component signals by MRSVD. Finally, the detail signals which contained the most valuable fault features are selected by kurtosis criterion. The Hilbert envelope spectrum analysis is applied to the details signals afterwards to obtain the fault information. The experimental results have shown that the proposed method is capable of extracting useful fault features from complex vibration signals, and has offered an approving performance on fault diagnosis of the rolling bearing.
出处 《计算机工程与应用》 CSCD 北大核心 2018年第3期217-221,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61563024 No.51169007) 云南省中青年学术和技术带头人后备人才培养计划(No.2011CI017)
关键词 广义形态滤波 多分辨奇异值分解(MRSVD) Hilbert包络谱分析 故障诊断 generalized morphological filter Multi-Resolution Singular Value Decomposition(MRSVD) Hilbert enve lope spectrum analysis fault diagnosis
  • 相关文献

参考文献11

二级参考文献116

共引文献455

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部