期刊文献+

基于模型预测的传感器网内通信数据约减方法 被引量:1

Traffic data mining method based on model prediction in wireless sensor networks
下载PDF
导出
摘要 针对平稳感知对象和能耗敏感的一类无线传感器网络,提出了一种基于自回归模型的时间序列数据预测生成方法.通过采用少量感知对象的测量值作为样本来估计传感器节点AR模型的参数,并使用模型参数在汇聚节点内重构传感器节点的测量值,实现网内节点通信数据的约减.在误差可控情况下,减少传感器节点与汇聚节点间的通信数据量,从而降低网络整体能耗.通过实测数据仿真验证该方法的有效性. Aiming at a class of wireless sensor network applications,which are sensitive to energy consumption and surveillance target with stationary state change process,a new method based on AR model was proposed to forecast time series data. A small amount of measurements would be taken as samples to estimate the parameters of AR model in sensor nodes,and used to forecast sensor node' s observation values by sink node. Under the control of errors,such observation values would be used to substitute ground truth measurements of the sensor nodes.Traffic data between nodes and the overall energy consumption in the network would be reduced. Third party data were used to simulate and verify the method to demonstrate its validity.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2017年第6期763-767,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(51405301)
关键词 传感器网络 AR模型 低能耗 数据预测 数据融合 sensitive energy consumption surveillance target stationary state change process AR model measurements
  • 相关文献

参考文献7

二级参考文献100

  • 1陈雄,杜以书,唐国新.无线传感器网络的研究现状及发展趋势[J].系统仿真技术,2005,1(2):67-73. 被引量:25
  • 2杨婷.基于自适应动态均匀分簇的WSN数据融合算法[J].计算机科学,2012,39(S3):103-107. 被引量:3
  • 3颜振亚,郑宝玉.无线传感器网络[J].计算机工程与应用,2005,41(15):20-23. 被引量:40
  • 4刘敏钰,吴泳,伍卫国.无线传感网络(WSN)研究[J].微电子学与计算机,2005,22(7):58-61. 被引量:44
  • 5Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 6Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 7Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 8Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 9Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 10Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.

共引文献188

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部