期刊文献+

两种电磁场谱间断元方法的比较

Comparison of two discontinuous spectral element methods
下载PDF
导出
摘要 时域间断元方法是近年来电磁场计算领域的重要进展之一。将基函数的插值点和数值积分点重合的质量集中技术是降低该间断元方法质量矩阵存储开销和提高计算效率的重要手段。通过谐振腔、带通滤波器以及光子晶体内的电磁场等数值算例,在四边形网格上比较了传统的质量集中算法和近来提出的Weight-Adjust算法之间的差异。计算结果表明,尽管两种方法的存储量一样,但Weight-Adjust算法具有更高的精度。 This paper is concerned with the comparison of two spectral Discontinuous Galerkin Time-Domain(DGTD)methods for the solution of Maxwell's equations in two-dimensional space.The first scheme is based on the conventional mass-lumping technique,where the same set of points are chosen for both the interpolation base functions and the numerical integration of coefficients.The second scheme is a newly proposed approach,called the Weight-Adjusted discontinuous Galerkin(WADG)method.Several numerical examples are presented to evaluate the performance of the two methods.It is shown that although the two methods need the same storage capacity,the WADG method has higher accuracy.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2018年第2期47-51,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(31600675 61231003)
关键词 间断伽辽金算法 MAXWELL方程 质量集中 谱方法 discontinuous Galerkin method Maxwell equations mass-lumping spectral method
  • 相关文献

参考文献1

二级参考文献16

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 3LIN S Y, CHIN Y S. Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations [ J ]. AIAA Journal, 1993: 2016-2023.
  • 4BASSI F, RRBAY S. High-order accurate discontinuous finite element solution of the 2D Euler equations [ J]. Journal of Computational Physics, 1997, 138 ( 2 ) : 251-285.
  • 5RASETARINERA P, HUSSAINI M Y. An efficient implicit discontinuous spectral Galerkin method [ J ]. Journal of Computational Physics, 2001 : 718-738.
  • 6LESAINT P. Sur la resolution des systemes hyperboliques du premier order par des methods delements finis [ D ]. Unversite Paris 6, 1975.
  • 7LESAINT P, RAVIART P A. On a finite element method to solve the neutron transport equation [ M ].// C. de Boor. Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, 1974.
  • 8COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework [J]. Mathematics of Computation, 1989 : 52-411.
  • 9COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one dimensional systems [J]. Journal of Computational Physics, 1989 : 84-90.
  • 10COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ: the multidimensional case [J]. Mathematics of Computation, 1990 : 45-581.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部