期刊文献+

基于优化估计的深度图像修复与误差补偿方法研究 被引量:10

Repair and error compensation method for depth image based on optimization estimation
下载PDF
导出
摘要 针对Kinect传感器在获取深度图像时存在深度值随机跳变的不准确性问题,基于最优估计的思想,提出卡尔曼滤波与多帧平均法相结合的图像修复方法。首先利用卡尔曼滤波对多幅深度图像进行修复处理,实现Kinect传感器在采集信息过程中随着时间递推,深度值的跳变逐渐趋于平稳的效果;然后基于多幅图像平均法确定最终的深度图像,解决了Kinect获取深度值存在误差导致的不精确问题。实验结果表明,该算法的均方根误差为38.102 5,平均梯度为0.471 3,信息熵为6.191 8,与单幅图像修复效果相比,得到的深度图像边缘更加清晰。 The depth value of Kinect sensor changes randomly when the depth image is obtained.In order to solve this problem, this paper presents an image repairing method coKalman filtering and multiple frames averaging based on the idea of optimal estimation. Firstly, Kalman filter is used for repairing multiple depth images. The depth value tends to be stablewith time recursion in the process of information capture by Kinect sensor. Secondly, multiple frames averaging method is used to determine the final depth image, in order to solve the prob-lem of inaccurate depth value due to the error of Kinect sensor. The experimental resthat, the root mean square error of the algorithm is 38. 102 5 , the average gradient is 0. 471 3, the information entropy is 6. 191 8, the edge of depth image of this algorithm is more clearcompared with the single image restoration.
出处 《应用光学》 CAS CSCD 北大核心 2018年第1期45-50,共6页 Journal of Applied Optics
基金 中国博士后基金(200902593)
关键词 深度图像 误差修复 卡尔曼滤波 优化估计 depth image error repair Kalman filter optimal estimation
  • 相关文献

参考文献2

二级参考文献10

  • 1FARSIU S, ROBINSON M D, ELAD M, et al. Ad-vances and challenges in superresolution[J]. Inter- national Journal of Imaging Systems and Technology, 2004,14(2) : 47-57.
  • 2FAR;IU S, ELAD M, MILANFAR P. Multiframe demosaicing and super-resolution of color images[J]. IEEE Transactions on Image Processing, 2006, 15(1) : 141-159.
  • 3PARK S C, PARK M K, KANG M G. Superresolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine, 2003, 20 ( 3 ) :21-36.
  • 4BAKER S, KANADE T. Limits on super-resolutionand how to break them[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2002,24(9):1167-1183.
  • 5ELAD M, HEL-OR Y. A fast super-resolution re-construction algorithm for pure translational motionand common space invariant blur[J]. IEEE Transactions on Image Processing, 2001,10(8) : 1187-1193.
  • 6LEE E S, KANG G. Regularized adaptive high-reso-lution image reconstruction considering inaccuratesubpixel registration[J]. IEEE Transactions on Image Processing,2003,12(7) : 826-836.
  • 7FARSIU S, ROBINSON M D, ELAD M, et al. Fastand robust multi-frame super-resolution [J]. IEEE Transactions on Image Processing, 2004, 13 (10) : 1327-1344.
  • 8ELAD M, FEUER A. Super-resolution restorationof continuous image sequence-adaptive filtering ap- proach[J]. IEEE Transactions on Image Processing, 1999,8(3) :387-395.
  • 9PATTI A J,ALTUNBASAK Y. Artifact reductionfor set theoretic superresolution image reconstruc-tion with edge adaptive constraints and higher-order interpolants[J]. IEEE Transactions on Image Processing, 2001,10(1) :179-186.
  • 10吴俊,吴桢.合成孔径光学系统的成像特性和图像复原[J].应用光学,2010,31(4):567-573. 被引量:5

共引文献23

同被引文献108

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部