期刊文献+

基于球面单径容积准则的多雷达分布式再入目标实时跟踪算法

Real-time Tracking Algorithm for Multi-radar Distributed Reentry Target Based on Spherical Simplex-radial Cubature Rule
下载PDF
导出
摘要 针对多雷达对再入目标的实时跟踪问题,提出一种基于球面单径容积准则的分布式容积卡尔曼滤波算法。首先,利用球面单径容积准则近似计算非线性高斯权重积分,然后由统计线性误差传播方法等价表示滤波过程中的互协方差矩阵;最后通过一致性算法将单雷达容积卡尔曼滤波器所得时间更新结果与邻居雷达间进行信息交互与一致化处理,得到分布式球面单径容积卡尔曼滤波算法。该算法提高了再入弹道目标跟踪精度;无信息融合中心的通信拓扑结构降低了雷达间的通信量与计算量,提高了整个系统的生存能力。数值仿真结果验证了算法的有效性。 A distributed cubature Kalman filter algorithm based on spherical simple cubature rule is proposed for multi-radar real-time tracking of reentry targets.Firstly,the nonlinear Gaussian weight integral is approximated by the spherical simplex-radial rule.Then,the volumetric information is obtained by the equivalent linear error propagation method.Finally,the information fusion and consensus between the time update result of the single radar volume Kalman filter and the neighbor radar are obtained by the consistency algorithm,and the distributed spherical single diameter Kalman filter algorithm is obtained.The algorithm improves the tracking accuracy of the reentry trajectory target.The communication topology without information fusion center reduces the traffic and computation between the radar and improves the survivability of the whole system.The numerical simulation results verify the effectiveness of the algorithm.
出处 《科学技术与工程》 北大核心 2018年第2期180-185,共6页 Science Technology and Engineering
基金 国家高技术研究发展计划(2015AA7026085)资助
关键词 再入目标 分布式 球面单径 容积卡尔曼滤波 一致性算法 rennty target distributed simplex-radial rule cubature K a l m a n filter consensus al-gorithm
  • 相关文献

参考文献2

二级参考文献34

  • 1Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188.
  • 2Fu X Y, Jia Y M. An Improvement on resampling algorithm of particle filters[J~. IEEE Trans. on Signal Processing, 2010, 58(10) :5414 - 5420.
  • 3Kabaoglu N. Target tracking using particle filters with support vector regression[J]. IEEE Trans. on Vehicular Technology, 2009,58(5) :2569- 2573.
  • 4Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans. on Automatic Control, 2000,45(5) : 910 - 927.
  • 5Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss Hermite quadrature[J]. Pro ceeding of the IEEE,2007,95(5) :953 - 977.
  • 6Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009,54(6) : 1254 - 1269.
  • 7Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations[J]. IEEE Trans. on Signal Processing ,2010,58(10) :4977 - 4993.
  • 8Li X R, Jilkov V P. A survey of maneuvering target tracking part Ⅱ ballistic target models[C]// Proc. of Signal and Data Processing of Small Targets, 2001 : 559 - 581.
  • 9Frina A, Ristic B, Benvenuti D. Tracking a ballistic target: comparison of several nonlinear filters[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002,38 (3) : 854 - 867.
  • 10Ristic B, Farina A, Benvenuti D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceeding of Radar Sonar and Navigation ,2003,150(2) :65 - 70.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部