期刊文献+

基于穗光谱指数的水稻产量预测 被引量:3

Rice yield prediction with panicle spectral indices
下载PDF
导出
摘要 为探索运用水稻穗光谱植被指数预测水稻产量的可行性,以2个水稻品种为材料,设置3个氮素水平,测定了3个时期水稻叶片和穗的高光谱反射(350~2 500 nm)和色素含量,并测定了水稻的产量构成组分和籽粒产量。结果表明:与典型的植物反射光谱相比,水稻穗的反射光谱具有"绿峰消失"的特征;与叶片光谱指数[归一化差值指数(normalized vegetation index,NDVI)和光化学反射指数(photochemical reflectance index,PRI)]相比,穗光谱指数对叶绿素更敏感,而且能更准确地区分氮素水平。水稻叶片NDVI和PRI预测产量的均方根误差(RSME)分别为873.4~1 125.0、723.3~889.4 kg·hm^(-2),而穗NDVI和PRI预测产量的RSME分别为681.7~743.1、515.0~637.8 kg·hm^(-2),表明水稻穗光谱指数比叶片光谱指数更适合于水稻产量预测。 This pilot study was aimed to investigate the feasibility of predicting rice yield with panicle spectral indices. A field experiment was conducted with two rice genotypes of contrasting yield potential and three contrasting nitrogen( N) levels at Hangzhou,China in 2015. Leaf and panicle hyperspectral reflectance( 350-2 500 nm),chlorophyll concentrations( Chlc) and carotenoids concentrations( Carc) were measured at three different dates,and the yield components and grain yield were determined at maturing stage. It was found that the panicle spectra were distinctly different from the leaf spectra with the disappearance of the sharp green "hump". As compared to the corresponding leaf indices,the panicle normalized vegetation index( NDVI) and photochemical reflectance index( PRI)were more reliable in differentiating the N levels,more sensitive to the chlorophyll content,and performed more accurately in predicting the rice yield. In the rice yield prediction based on best relationship fit,NDVI and PRI in the leaves at the three dates yielded a RSME of 873. 4-1 125. 0 and 723. 3-889. 4 kg·hm^(-2),respectively,while NDVI and PRI in the panicles at the three dates achieved a RMSE of 681. 7-743. 1 and 515. 0-637. 8 kg·hm^(-2),respectively.
出处 《浙江农业学报》 CSCD 北大核心 2018年第2期187-193,共7页 Acta Agriculturae Zhejiangensis
基金 国家自然科学基金(41271363)
关键词 水稻 高光谱反射 植被指数 产量 rice hyperspectral reflectance vegetation indices panicle yield
  • 相关文献

参考文献2

二级参考文献31

  • 1尹兆友,汪继发,卜建英,钱之云,李吉树,梁华金,唐淑菊.两系杂交中籼华安3号不同密度、施氮量与产量关系的研究[J].杂交水稻,2000,15(S1):41-43. 被引量:14
  • 2薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105. 被引量:46
  • 3孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量[J].作物学报,2005,31(7):844-850. 被引量:53
  • 4郑志明,严力蛟,王兆骞,徐照本,楼余产.水稻氮吸收的动态模拟和氮肥管理的数学优化[J].浙江农业大学学报,1997,23(2):211-216. 被引量:22
  • 5Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evalution of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273-285.
  • 6Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+h and total carotenoid content in Eucalyptus leaves. Remote Sens Environ, 1998, 66 : 111-121.
  • 7Daughtry C S T, Wahhall C L, Kim M S. Estimating corn foliar chlorophyll content from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
  • 8Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
  • 9Card D H, Peterson P A, Matson P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens Environ, 1988, 26:123-147.
  • 10Dart B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves, Int J Remote Sens, 1999, 20(14)2741-2759.

共引文献266

同被引文献88

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部