期刊文献+

基于加权差分主元分析的化工过程故障检测 被引量:22

Fault Detection in Chemical Processes Using Weighted Differential Principal Component Analysis
下载PDF
导出
摘要 针对工业生产过程的多模态和非线性特性,提出了一种新的基于加权差分主元分析的故障检测算法。首先选取原始数据样本的最近邻xf以及xf的前k个近邻,分别计算出xf的前j个近邻样本的均值mj和权值wj,利用加权差分的方法对原始数据进行预处理,剔除多模态和非线性特征;然后利用主元分析法(PCA)计算出负载矩阵P以及SPE和T2检测指标的控制限,建立PCA模型;最后将待检测数据运用加权差分法预处理后投影到PCA模型上计算检测指标,通过检测指标是否超过控制限进行故障检测。将该方法应用于数值例子和半导体生产过程来验证其有效性。 A new fault detection algorithm based on weighted differential principal component analysis(PCA) was proposed for studying multimode and nonlinearity of industrial production processes. The closest neighbor xf of the original data sample and the closest k points in front of xf were first selected. The mean value mj and the weighted value wj of the j points in front of xf were calculated. The weighted differential method was then used to preprocess the original data to eliminate multimodal and nonlinear characteristics. The principal component analysis algorithm was applied, and the loading matrix P and the control limits of detection indexes SPE and T2 were calculated to establish the PCA model. Finally, the test data(after preprocessing based on weighted differential PCA) was projected onto the PCA model to calculate the detection index. Fault detection was carried out by detecting whether the detection index exceeded the control limit. The proposed method was applied for numerical examples and semiconductor manufacturing processes to verify its effectiveness.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2018年第1期186-196,共11页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金重大项目(61490701) 国家自然科学基金(61673279) 辽宁省教育厅重点实验室项目(LZ2015059) 辽宁省教育厅项目(L2016007 L2015432) 辽宁省自然科学基金(201602584)
关键词 故障检测 多模态 非线性 主元分析 差分预处理 加权差分主元分析 fault detection multimode nonlinear principal component analysis differential preprocessing weighted differential principal component analysis
  • 相关文献

参考文献6

二级参考文献48

  • 1谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 2Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J ]. AIChE J. , 2008. 54 (7): 1811-1829.
  • 3Ge Z Q. Song Z H. Multimode process monitoring based on Bayesian method [J ]. J. Ch emom. , 2009, 23 (12): 636-650.
  • 4Ge Z Q, Yang C J, Song Z H, et al. Robust online monitoring for multimode processes based on nonlinear external analysis [J ]. Ind. Eng. Chern, Res., 2008, 47 (14): 4775-4783.
  • 5Zhao C H, Yao v. Gao F R, et al. Statistical analysis and online monitoring for multimode processes with between?mode transitions [J]. Chem. Eng. Sci., 2010. 65: 5961- 5975.
  • 6Ge Z Q, Song Z H. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE J., 2010, 56: 2838-2849.
  • 7Zhao S J, Zhang J, XU Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models [J ]. J. Process Control, 2006, 16 (7): 763-772.
  • 8Zhao S J, Zhang J, XU Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Ind. Eng. Chern, Res. , 2004, 43 (22): 7025-7035.
  • 9Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J ]. Ind. Eng. Chern, Res., 2006, 45 (9): 3095-3107.
  • 10Ge Z Q. Song Z H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach [J]. Control Eng. Pract. , 2008, 16 (12): 1427-1437.

共引文献51

同被引文献161

引证文献22

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部