期刊文献+

一种带谐振腔的压电风能收集器 被引量:4

Piezoelectric wind energy harvester with resonant cavity
下载PDF
导出
摘要 为了提高风能收集器的能量转化效率,提出了一种带谐振腔的压电风能收集器。建立了该压电风能收集器的数学模型,该模型考虑了风流体、结构振动以及输出电能之间的关系。基于该模型进行了仿真分析,获得了收集器结构参数、风速对发电能力的影响规律。制作了风能收集器样机,并进行了实验,结果表明,在2~12 m/s的低风速范围内,带有谐振腔的压电风能收集器的输出电能要大于不带谐振腔的收集器。 In order to improve energy conversion efficiency of wind energy harvester,a piezoelectric wind energy harvester with resonant cavity was proposed. A mathematical model for the piezoelectric wind energy harvester was established considering the relationship among wind fluid,structural vibration and output power. The simulation analysis was performed based on the model to study the effects of structural parameters of the energy harvester and wind speed on its generating capacity. The piezoelectric wind energy harvester prototypes were fabricated and used to conduct tests. The test results showed that the output power of the piezoelectric wind energy harvester with resonant cavity is larger than that of the harvester without resonant cavity within a lower wind speed range of 2-12 m/s.
出处 《振动与冲击》 EI CSCD 北大核心 2018年第3期22-26,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(51305248 51577112) 上海市自然科学基金(13ZR1416900) 上海高校青年教师培养资助计划(ZZSD13051)
关键词 风能收集器 压电振子 能量转换 数学模型 wind energy harvester piezoelectric vibrator energy conversion mathematical model
  • 引文网络
  • 相关文献

参考文献2

二级参考文献62

  • 1周洋,万建国,陶宝祺.PVDF压电薄膜的结构、机理与应用[J].材料导报,1996,10(5):43-47. 被引量:22
  • 2唐彬,温志渝,温中泉,董媛.振动式微型发电机的研究现状与发展趋势[J].微纳电子技术,2007,44(5):254-258. 被引量:6
  • 3Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[ J]. Smart Materials and Structures, 2007, 16(2) : 498 -505.
  • 4Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters [ C ]. Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans, Louisiana: ASME, 2002:1 - 10.
  • 5Wang P H, Dai X H, Fang D M, et al. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator[ J]. Microelectronics, 2007, 38( 12): 1175 - 1180.
  • 6Sbearwood C, Yates R B. Development of an electromagnetic micro-generator [ J ]. Electronics Letters, 1997, 33 ( 22 ) : 1883 - 1884.
  • 7Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and Actuators A, 2004, 115 (2 - 3) : 523 - 529.
  • 8Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [ J ]. Journal of Micromechanics and Microengineering, 2008, 18(5) : 550- 557.
  • 9Chew Z J, Li L J. Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies[J]. Sensors and Actuators A, 2010, 162( 1 ): 82 - 92.
  • 10Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack [ J ]. Mechanical Systems and Signal Processing, 2008, 22(3): 721 -734.

共引文献93

同被引文献18

引证文献4

二级引证文献5

;
使用帮助 返回顶部