期刊文献+

基于深度学习的数字图书馆跨媒体语义检索方法研究 被引量:14

Research on Cross-media Semantic Retrieval Method of Digital Library Based on Deep Learning
下载PDF
导出
摘要 [目的/意义]研究基于深度学习的数字图书馆跨媒体语义检索方法。[方法/过程]分析深度学习的概念、深度结构以及深度学习的必备条件,研究深度学习与数字图书馆跨媒体语义检索的关系,指出基于深度结构的数字图书馆跨媒体相关性学习技术,构建基于深度学习的数字图书馆跨媒体语义检索框架。[结果/结论]深度学习与跨媒体语义检索的结合,作为数字图书馆全新的信息检索模式,可以解决跨媒体寻找语义信息和高效处理复杂维度数据的问题,大幅度提高数据检索、整合效率,必然会替代现有的信息检索工具,成为大数据时代提升知识服务水平的利剑。 [Purpose/significance ]The paper is to study cross-media semantic retrieval method of digital library based on deep learning. [Method/process "The paper analyzes the concept of deep learning, the depth structure and the prerequisites for deep learn-ing, studies the relationship between deep learning and digital library cross-media semantic retrieval, points out cross-media correla-tion learning technology of digital library based on depth structure, and builds a framework based on deep learning for digital library cross-media semantic retrieval. [Result/conclusion] As a new digital library information retrieval model, the combination of deep learning and cross-media semantic retrieval can solve the problems of retrieving semantic information across the media and efficiently process-ing complex dimensional data, greatly improve the efficiency of data retrieval and integration, certainly replace the existing information retrieval tools, and become a sword to enhance the level of knowledge service in the era of big data.
作者 彭欣
出处 《情报探索》 2018年第2期16-19,共4页 Information Research
关键词 深度学习 数字图书馆 跨媒体 语义检索 deep learning digital library cross-media semantic retrieval
  • 相关文献

参考文献8

二级参考文献123

  • 1宗世海.“语素”说、“词素”说理由评析——兼论汉语语素的分类[J].暨南学报(哲学社会科学版),1997,19(4):136-144. 被引量:6
  • 2李文彬.谈馆藏档案数字化优先原则[J].浙江档案,2004(10):33-33. 被引量:4
  • 3徐德智,郑春卉,K. Passi.基于SUMO的概念语义相似度研究[J].计算机应用,2006,26(1):180-183. 被引量:56
  • 4黄萃,陈永生.基于Agent的数字档案个性化服务体系研究[J].档案学通讯,2006(5):56-60. 被引量:12
  • 5何婷婷,张小鹏.特定领域本体自动构造方法[J].计算机工程,2007,33(22):235-237. 被引量:16
  • 6Cantador I, Bellogfn A, Castells P. Ontology-based person- alised and Context- aware Recommendations of News Items [C~//Proceedings of the 2008 IEEE/WIC/ACM InternationalConference on Web Intelligence and Intelligent Agent Technolo- gy-Volume01[A]. IEEE Computer Society,2008:562-565.
  • 7Aleman-Meza B, Halaschek C, Arpinar I B. Context-aware Semantic Association Ranking E C]// Cruz I F, Kashyap V, Decker S, et al. Proceeding of the 1st International Workshop on Semantic Web and Databases E A 1. Berlin, Germa-ny: Hum- boldt-Universit~t, 2003:33-50.
  • 8Barnaghi P M, Abdul Kareem S. A Context-Aware Ranking Method for the Complex Relationships on the Semantic Web [ C 1// Advanced Language Processing and Web Information Technology, International Conference on IEEE Computer Socie- ty~A], 2007:129-134.
  • 9Studer R, Benjamins V R, Fensel D. Knowledge Engineering: Principles and Methods [ J J. Data & Knowledge Engineering, 1998,25 (97) : 161-197.
  • 10Schilit B, Adams N, Want R. Context-Aware Computing Ap- plications [ C ]// In Proceedings of the Workshop on Mobile Computing Systems and Applications[ A], 1994:85-90.

共引文献99

同被引文献123

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部