摘要
硬件在环仿真是航天设备进行地面模拟试验所需的关键技术之一,其中硬件系统需要较高的承载能力以及高频响、高精度的控制性能。提出一种六维微重力模拟平台气电联合控制的方法,6条支腿均由气缸和电动缸并联构成,气缸提供硬件平台80%~90%的负载,电动缸保证控制系统的精度和响应速度。其中气动压力控制系统是非线性很强的时变系统,采用积分型线性自抗扰控制器对其进行控制,相比于PID算法精度更高、响应速度更快,并且具有较强的鲁棒性。
HIL (Hardware-In-the-Loop) simulation is one of the key technologies for aerospace devices to imple ment microgravity simulation experiment on the ground, where the hardware system needs high carrying capacity, highfrequency response and high precision control performance. Therefore, a hybrid pneumatic-electric actuator is proposed forthe 6-DOF microgravity simulation platform. Each leg of the platform is composed of a cylinder and a servo motor in parallel.The cylinders support 80%-90% of load and the servo motors ensure the high accuracy of the control system. Sincethe pneumatic force control system is a highly nonlinear system, an integral-linear active disturbance rejection controller(I-LADRC) is proposed. Compared to the PID algorithm, this controller provides a higher precision, faster response andstronger robustness.
出处
《航空制造技术》
2018年第4期65-72,共8页
Aeronautical Manufacturing Technology
基金
国家自然科学基金项目(51375230)
江苏省科技成果转化专项(BA2015098)
江苏省高等学校自然科学研究项目(17KJB460003)
关键词
气电联合控制
微重力模拟
斯图尔特平台
气动压力控制
自抗扰控制
Hybrid pneumatic-electric control
Microgravity simulation
Stewart platform
Pneumatic force control
Active disturbance rejection control