摘要
针对聚类数目未知情况下的聚类问题,提出了一种自组织特征映射网络(Self-organizing Feature Maps,SOFM)的二阶段聚类算法.首先通过SOFM网络的自组织学习过程对数据集进行粗聚类,将数据集划分为若干个簇,以获胜神经元代表每个簇内的所有样本;然后采用凝聚层次聚类的方法对获胜神经元进行再聚类,并以树状图的形式给出可视化聚类结果;最后综合两阶段聚类结果得到最终的聚类结果.实验结果表明,所提出的算法可以获得良好的聚类结果.
In order to achieve clustering when the number of clusters is unknown,a two-phase clustering algorithm based on Self-organizing Feature Maps(SOFM)is proposed.Firstly,the datasets are roughly clustered through the self-organizing learning process of SOFM.After that,the datasets are divided into several clusters.The winning neurons of SOFM stand for the samples in each cluster.Then,those winning neurons are re-clustered through the method of agglomerative hierarchical clustering,and the clustering results are shown in the form of dendrogram.Finally,based on these two clustering results,the final results are obtained.The experimental results show that the proposed algorithm has better clustering results.
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第2期329-333,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61171170)资助
安徽省自然科学基金项目(1408085QF115)资助
关键词
SOFM网络
聚类
神经元
权值
self-organizing feature maps cluster neuron weights