期刊文献+

支持D2D通信的蜂窝网自适应资源分配算法 被引量:2

Adaptive Resource Allocation Algorithm for Cellular Networks Supporting D2D Communication
下载PDF
导出
摘要 针对蜂窝与D2D混合网络中资源分配技术不具有自适应性、造成资源浪费的问题,提出一种根据实际网络环境自适应调整的资源分配方案,并设计两阶段的资源分配算法对该方案进行求解。第一阶段根据用户间的干扰自适应调整使用每个资源块的用户个数和D2D用户可使用的资源块个数,第二阶段利用改进的粒子群算法以吞吐量最大为目标分配功率。仿真结果表明,该算法的性能与穷举搜索最优算法最相近,且系统吞吐量和D2D用户的接入率都明显大于固定分配的算法。 As to the problem that the resource allocation technology is not adaptive in the hybrid network of cellular and Device-to-Device(D2D) which causes the waste of resources,a resource allocation scheme is proposed which can be adjusted adaptively according to the actual network environment,and a two-stage resource allocation algorithm is designed to solve it.Both the number of users using every resource block and the number of resource blocks that D2D users can use are adjusted adaptively according to the interference between users in the first stage,and the improved PSO algorithm is used to allocate power which maximizes the throughput in the second stage.The simulation results show that the proposed algorithm is near optimal algorithm.Besides,the throughput of the system and the access rate of D2D users are significantly superior to the fixed allocation algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第2期107-113,共7页 Computer Engineering
基金 国家高技术研究发展计划项目(2014AA01A701) 重庆市教委科研项目(KJ120510)
关键词 D2D通信 自适应 资源分配 资源复用 粒子群优化 Device-to-Device ( D2D ) communication adaptive resource allocation resource reuse Particle Swarm Optimization ( PSO )
  • 相关文献

参考文献5

二级参考文献59

  • 1廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neoral.Networks,Piscataway,USA,1995:1942-1948.
  • 3Gregorio T P,Coello C A C.A constraint-handling mechanism for particle swarm optimizafion[C]//IEEE Congress on Evolutionary Computation,Portland,USA,2004:1396-1403.
  • 4Juan C,Cabrers F,Coello C A C.Handling constraints in particle swarm optimization using a small population size[M]//Advences in Artificial Intelligence.Berlin:Springer,2007:41-51.
  • 5Riget J,Vesterstroem J S.A diversity guided particle swarm optimizer-the ARPSO[R].Aarhus:University of Aarhus,2002.
  • 6Andrews P S.An investigation into mutation operators for particle swarm optimization[C]//IEEE Congress on Evolutionary Computation,Vancouver,Canada,2006:3789-3796.
  • 7Runarsson T P,Yao X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
  • 8Venkatraman S,Yen G G.A genetic framework for constrained optimization using genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
  • 9Farmani R,Wright J A.Self-adaptive fitness formulation for constrained optimization[J].IEEE Transations on Evolutionary Computation,2003,7(5):445-455.
  • 10Kenddy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE International Conf. on Neural Network. Perth, Australia: [s. n.], 1995: 1943-1948.

共引文献52

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部