期刊文献+

主题联合词向量模型 被引量:6

Topic Combined Word Vector Model
下载PDF
导出
摘要 当前大部分的词向量模型针对一个单词只能生成一个向量,由于单词的多义性,使用同一个向量表达不同语境下的同一个单词是不准确的。对此,提出一种新的词向量模型。使用潜狄利克雷特分布和神经网络对单词进行训练,得到单词及其主题的向量,并对两者进行线性变换得到最终的词向量。实验结果表明,该模型的准确度高于现有多向量模型。 Currently,most word vector models can build only one vector for a single word.Due to word’s polysemy,it is incorrect to use one vector representing a same word under different context.This paper proposes a new word vector model.It uses latent dirichlet distribution and neural networks to train words to obtain word vectors and corresponding topic vectors.And then it applies linear transformations on them to build the final word vectors.Experimental results show that the accuracy of proposed model is high compared with current multi-vector models.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第2期233-237,270,共6页 Computer Engineering
基金 上海市自然科学基金"阵元互耦条件下基于空域稀疏的阵列测向方法研究"(15ZR1439800) 上海市科技创新行动计划项目(15DZ1100400 16511105300)
关键词 自然语言处理 词向量 主题模型 神经网络 哈夫曼树 natural language processing word vector topic model neural network Haffman tree
  • 相关文献

参考文献2

二级参考文献37

  • 1Bengio Y, Ducharme R, Vincent P, et al. A neural prob- abilistic language model[ J]. Journal of Machine Learning Research, 2003, 3(2): 1137-1155.
  • 2JeffKuo H K, Ansoy E, Emami A, et al. Large scale hier- archical neural network language models [ C ]//In: Proceed- ings of the 2012 Annual Conference of International Speech Communication Association. Portland, USA: ISCA, 2012: 1672-1675.
  • 3Hai-Son Le, Oparin I, Allauzen A, et al. Structured out- put layer neural network language model [ C ] //IEEE Transactions on Speech and Audio Processing, 2013, 21 ( 1 ) : 195-204.
  • 4Mikolov T, Karafiat M, Burget L, et al. Recurrent neural network based language model [ C ]//In : Proceedings of the 2010 Annual Conference of International Speech Com- munication Association. Makuhari, Chiba, Japan: ISCA, 2010 : 1045-1048.
  • 5Mikolov T, Kombrink S, Burget L, et al. Extensions of recurrent neural network language model [ C ]//In : Pro- ceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing. Prague, Czech Republic: IEEE, 2011: 5528-5531.
  • 6Hochreiter S, Bengio Y, Frasconi P, et al. Gradient flow in recurrent nets: the difficulty of learning long-term de- pendencies[ M]. 3. Field Guide to Dynamical Recurrent Neural Networks. Piscataway, N.J. IEEE Press, 2001 : 237-243.
  • 7Zen H, Sak H. Unidirectional long short term memory re- current neural network with recuirent output layer for low latency speech synthesis [ C ]//In: Proceedings of the 2015 Annual Conference of International Speech Commu-nication Association. Brisbane, Australia: ISCA, 2015 : 4470-4474.
  • 8Xiang-Gong Li, Xi-Hong Wu. Improving long short-term memory networks using maxout units for large vocabulary speech recognition[ C ]//In: Proceedings of the 2015 Annual Conference of International Speech Conununication Associa- tion. Brisbane, Australia: ISCA, 2015:4600-4604.
  • 9Arisoy E, Sethy A, Ramabhadran B, et al. Bidirectional re- current neural network language models for automatic speech recognition [ C ]//In : Proceedings of the 2015 Annual Con- trence of International Speech Conununication Association. Brisbane, Australia: ISCA, 2015:5421-5425.
  • 10Jian Zhang, Dan Qu, Zhen Li. An improved recurrent neural network language model with context vector fea- tures[ C]//In: Proceedings of the 2014 IEEE Interna- tional Conference on Software Engineering and Service Science. Beijing, China: IEEE, 2014:828-831.

共引文献20

同被引文献11

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部